Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The tropical forest carbon cycle and climate change


Tropical forests make an approximately neutral contribution to the global carbon cycle, with intact and recovering forests taking in as much carbon as is released through deforestation and degradation. In the near future, tropical forests are likely to become a carbon source, owing to continued forest loss and the effect of climate change on the ability of the remaining forests to capture excess atmospheric carbon dioxide. This will make it harder to limit global warming to below 2 °C. Encouragingly, recent international agreements commit to halting deforestation and degradation, but a lack of fundamental data for use in monitoring and model design makes policy action difficult.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Tropical forest carbon fluxes assessed using different methods.
Fig. 2: Contradiction between the main datasets of forest area change.
Fig. 3: The effects of climate and land-use change on the intact forest carbon sink.


  1. 1.

    Le Quéré, C. et al. Global carbon budget 2016. Earth Syst. Sci. Data 8, 605–649 (2016).An annually produced analysis of the best evidence for the size and trends of the components of the global carbon cycle.

    ADS  Article  Google Scholar 

  2. 2.

    Tans, P. NOAA/ESRL (2017).

  3. 3.

    Keeling, R. Scripps Institution of Oceanography (2017).

  4. 4.

    Grace, J., Mitchard, E. & Gloor, E. Perturbations in the carbon budget of the tropics. Glob. Chang. Biol. 20, 3238–3255 (2014).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).This study reconciles atmospheric inversions with models, and so confirms that there is a strong tropical carbon sink, driven by rising atmospheric CO 2.

    ADS  Article  PubMed  CAS  Google Scholar 

  6. 6.

    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science 333, 988–993 (2011).This paper combines evidence from thousands of global forest plots and other data to estimate the size and location of forest sinks and sources.

    ADS  Article  PubMed  CAS  Google Scholar 

  7. 7.

    Patra, P. K. et al. The Orbiting Carbon Observatory (OCO-2) tracks 2–3 peta-gram increase in carbon release to the atmosphere during the 2014–2016 El Niño. Sci. Rep. 7, 13567 (2017).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. 8.

    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).

    ADS  MathSciNet  Article  PubMed  CAS  Google Scholar 

  9. 9.

    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).

    ADS  Article  PubMed  CAS  Google Scholar 

  10. 10.

    Ma, X. et al. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Sci. Rep. 6, 37747 (2016).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. 11.

    Liu, J., Bowman, K. W., Schimel, D. S., Parazoo, N. C., Jiang, Z., Lee, M. et al. Contrasting carbon cycle responses of the tropical continents to the 2015–2016 El Niño. Science 358, eaam5690 (2017).This study uses a satellite sensitive to atmospheric greenhouse gas concentrations to show that all tropical forest areas released CO 2 in response to the 2015–2016 El Niño, but for different reasons.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    ADS  Article  PubMed  CAS  Google Scholar 

  13. 13.

    Brienen, R. J. W. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015). Long-term analysis of Amazon plot data shows that the intact forest sink is reducing in size.

    ADS  Article  PubMed  CAS  Google Scholar 

  14. 14.

    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017); erratum 9, 342, (2018).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Peylin, P. et al. Global atmospheric carbon budget: results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).

    ADS  Article  CAS  Google Scholar 

  16. 16.

    Stephens, B. B. et al. Weak northern and strong tropical land carbon uptake from vertical profiles of atmospheric CO2. Science 316, 1732–1735 (2007).

    ADS  Article  PubMed  CAS  Google Scholar 

  17. 17.

    van der Werf, G. R. et al. CO2 emissions from forest loss. Nat. Geosci. 2, 737–738 (2009); erratum 2, 829 (2009).

    ADS  Article  CAS  Google Scholar 

  18. 18.

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    ADS  Article  CAS  Google Scholar 

  19. 19.

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  20. 20.

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).An important dataset is presented and analysed: global deforestation maps at 30-m resolution from 2000–2012.

    ADS  Article  PubMed  CAS  Google Scholar 

  21. 21.

    Keenan, R. J. et al. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manage. 352, 9–20 (2015).

    Article  Google Scholar 

  22. 22.

    Houghton, R. A., Byers, B. & Nassikas, A. A. A role for tropical forests in stabilizing atmospheric CO2. Nat. Clim. Chang. 5, 1022–1023 (2015).

    ADS  Article  Google Scholar 

  23. 23.

    Schleussner, C.-F. et al. Science and policy characteristics of the Paris Agreement temperature goal. Nat. Clim. Chang. 6, 827–835 (2016).

    ADS  Article  Google Scholar 

  24. 24.

    Saatchi, S. S. et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl Acad. Sci. USA 108, 9899–9904 (2011).

    ADS  Article  PubMed  Google Scholar 

  25. 25.

    Baccini, A. et al. Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nat. Clim. Chang. 2, 182–185 (2012).

    ADS  Article  CAS  Google Scholar 

  26. 26.

    Avitabile, V. et al. An integrated pan-tropical biomass map using multiple reference datasets. Glob. Chang. Biol. 22, 1406–1420 (2016).

    ADS  Article  PubMed  Google Scholar 

  27. 27.

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    ADS  Article  PubMed  CAS  Google Scholar 

  28. 28.

    Malhi, Y. The productivity metabolism and carbon cycle of tropical forest vegetation. J. Ecol. 100, 65–75 (2012). This paper presents how tropical forests cycle carbon, and the physiological basis of how this will change with climate change.

    Article  CAS  Google Scholar 

  29. 29.

    Malhi, Y. The carbon balance of tropical forest regions 1990–2005. Curr. Opin. Environ. Sustain. 2, 237–244 (2010).

    Article  Google Scholar 

  30. 30.

    Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  31. 31.

    Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  32. 32.

    Jung, M. et al. Global patterns of land-atmosphere fluxes of carbon dioxide latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J. Geophys. Res. 116, (2011).

  33. 33.

    Zarin, D. J. et al. Can carbon emissions from tropical deforestation drop by 50% in 5 years? Glob. Chang. Biol. 22, 1336–1347 (2016).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Achard, F. et al. Determination of tropical deforestation rates and related carbon losses from 1990 to 2010. Glob. Chang. Biol. 20, 2540–2554 (2014).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    ADS  Article  CAS  Google Scholar 

  36. 36.

    Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).

    ADS  Article  CAS  Google Scholar 

  37. 37.

    Liu, Y. Y. et al. Recent reversal in loss of global terrestrial biomass. Nat. Clim. Chang. 5, 470–474 (2015).

    ADS  Article  Google Scholar 

  38. 38.

    Harris, N. L. et al. Baseline map of carbon emissions from deforestation in tropical regions. Science 336, 1573–1576 (2012).

    ADS  Article  PubMed  CAS  Google Scholar 

  39. 39.

    Kim, D.-H., Sexton, J. O. & Townshend, J. R. Accelerated deforestation in the humid tropics from the 1990s to the 2000s. Geophys. Res. Lett. 42, 3495–3501 (2015).

    ADS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Mitchard, E. T. A. et al. Markedly divergent estimates of Amazon forest carbon density from ground plots and satellites. Glob. Ecol. Biogeogr. 23, 935–946 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    de Andrade, R. B. et al. Scenarios in tropical forest degradation: carbon stock trajectories for REDD+. Carbon Balance Manag. 12, 6 (2017).

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. 42.

    Bustamante, M. M. C. et al. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity. Glob. Chang. Biol. 22, 92–109 (2016).

    ADS  Article  PubMed  Google Scholar 

  43. 43.

    Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. 44.

    Chaplin-Kramer, R. et al. Degradation in carbon stocks near tropical forest edges. Nat. Commun. 6, 10158 (2015).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Ryan, C. M., Berry, N. J. & Joshi, N. Quantifying the causes of deforestation and degradation and creating transparent REDD+ baselines: a method and case study from central Mozambique. Appl. Geogr. 53, 45–54 (2014).

    Article  Google Scholar 

  46. 46.

    Berenguer, E. et al. A large-scale field assessment of carbon stocks in human-modified tropical forests. Glob. Chang. Biol. 20, 3713–3726 (2014).

    ADS  Article  PubMed  Google Scholar 

  47. 47.

    Meyer, V. et al. Detecting tropical forest biomass dynamics from repeated airborne lidar measurements. Biogeosciences 10, 5421–5438 (2013).

    ADS  Article  Google Scholar 

  48. 48.

    Global Forest Resources Assessment (FAO, 2015).

  49. 49.

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).

    ADS  Article  PubMed  CAS  Google Scholar 

  50. 50.

    Draper, F. C. et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017 (2014).

    ADS  Article  CAS  Google Scholar 

  51. 51.

    Page, S. Rieley, J. O., Banks, C. J. Global and regional importance of the tropical peatland carbon pool. Glob. Chang. Biol. 17, 798–818 (2011).

    ADS  Article  Google Scholar 

  52. 52.

    Moore, S. et al. Deep instability of deforested tropical peatlands revealed by fluvial organic carbon fluxes. Nature 493, 660–663 (2013).

    ADS  Article  PubMed  CAS  Google Scholar 

  53. 53.

    Hooijer, A. et al. Current and future CO2 emissions from drained peatlands in Southeast Asia. Biogeosciences 7, 1505–1514 (2010).

    ADS  Article  CAS  Google Scholar 

  54. 54.

    Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (2002).This study presents evidence that the peat fires in Indonesia during the 1997 El Niño event resulted in a globally important release of carbon.

    ADS  Article  PubMed  CAS  Google Scholar 

  55. 55.

    Roucoux, K. H. et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv. Biol. 31, 1283–1292 (2017).

    Article  PubMed  CAS  Google Scholar 

  56. 56.

    Bloom, A. A. et al. A global wetland methane emissions and uncertainty dataset for atmospheric chemical transport models (WetCHARTs version 1.0). Geosci. Model Dev. 10, 2141–2156 (2017).

    ADS  Article  Google Scholar 

  57. 57.

    Lewis, S. L. et al. Increasing carbon storage in intact African tropical forests. Nature 457, 1003–1006 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  58. 58.

    Phillips, O. L. et al. Changes in the carbon balance of tropical forests: evidence from long-term plots. Science 282, 439–442 (1998).

    ADS  Article  PubMed  CAS  Google Scholar 

  59. 59.

    Sheil, D. A critique of permanent plot methods and analysis with examples from Budongo Forest Uganda. For. Ecol. Manage. 77, 11–34 (1995).

    ADS  Article  Google Scholar 

  60. 60.

    Wheeler, C. E. et al. Carbon sequestration and biodiversity following 18 years of active tropical forest restoration. For. Ecol. Manage. 373, 44–55 (2016).

    Article  Google Scholar 

  61. 61.

    Grainger, A. Difficulties in tracking the long-term global trend in tropical forest area. Proc. Natl Acad. Sci. USA 105, 818–823 (2008).

    ADS  Article  PubMed  Google Scholar 

  62. 62.

    Romijn, E. et al. Assessing change in national forest monitoring capacities of 99 tropical countries. For. Ecol. Manage. 352, 109–123 (2015).

    Article  Google Scholar 

  63. 63.

    Moutinho, P., Guerra, R. & Azevedo-Ramos, C. Achieving zero deforestation in the Brazilian Amazon: What is missing? Elementa 4, 000125 (2016).

    Google Scholar 

  64. 64.

    Butsic, V., Baumann, M., Shortland, A., Walker, S. & Kuemmerle, T. Conservation and conflict in the Democratic Republic of Congo: the impacts of warfare mining, and protected areas on deforestation. Biol. Conserv. 191, 266–273 (2015).

    Article  Google Scholar 

  65. 65.

    Milodowski, D. T., Mitchard, E. T. A. & Williams, M. Forest loss maps from regional satellite monitoring systematically underestimate deforestation in two rapidly changing parts of the Amazon. Environ. Res. Lett. 12, 094003 (2017).

    ADS  Article  Google Scholar 

  66. 66.

    Swamy, L., Drazen, E., Johnson, W. R. & Bukoski, J. J. The future of tropical forests under the United Nations Sustainable Development Goals. J. Sustain. For. 37, 221–256 (2018).

    Article  Google Scholar 

  67. 67.

    Meyfroidt, P. & Lambin, E. F. Forest transition in Vietnam and displacement of deforestation abroad. Proc. Natl Acad. Sci. USA 106, 16139–16144 (2009).

    ADS  Article  PubMed  Google Scholar 

  68. 68.

    Sonter, L. J. et al. Mining drives extensive deforestation in the Brazilian Amazon. Nat. Commun. 8, 1013 (2017).

    ADS  Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. 69.

    Bonner, M. T. L., Schmidt, S. & Shoo, L. P. A meta-analytical global comparison of aboveground biomass accumulation between tropical secondary forests and monoculture plantations. For. Ecol. Manage. 291, 73–86 (2013).

    Article  Google Scholar 

  70. 70.

    Boysen, L. R. et al. Global and regional effects of land-use change on climate in 21st century simulations with interactive carbon cycle. Earth Syst. Dyn. 5, 309–319 (2014).

    ADS  Article  Google Scholar 

  71. 71.

    Bonan, G. B., Doney, S. C. Climate ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science 359, eaam8328 (2018). An introduction to ESMs, and how they can be improved.

    Article  PubMed  CAS  Google Scholar 

  72. 72.

    Gibbs, H. K. et al. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl Acad. Sci. USA 107, 16732–16737 (2010).

    ADS  Article  PubMed  Google Scholar 

  73. 73.

    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    ADS  Article  PubMed  CAS  Google Scholar 

  74. 74.

    Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought-fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    ADS  Article  PubMed  CAS  Google Scholar 

  75. 75.

    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122 (2015).

    ADS  PubMed  CAS  Google Scholar 

  76. 76.

    Betts, R. A. et al. Climate and land use change impacts on global terrestrial ecosystems and river flows in the HadGEM2-ES Earth system model using the representative concentration pathways. Biogeosciences 12, 1317–1338 (2015).

    ADS  Article  Google Scholar 

  77. 77.

    Ahlström, A., Schurgers, G., Arneth, A. & Smith, B. Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections. Environ. Res. Lett. 7, 044008 (2012).

    ADS  Article  Google Scholar 

  78. 78.

    Stouffer, R. J. et al. CMIP5 scientific gaps and recommendations for CMIP6. Bull. Am. Meteorol. Soc. 98, 95–105 (2017).

    ADS  Article  Google Scholar 

  79. 79.

    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747–756 (2010).

    ADS  Article  PubMed  CAS  Google Scholar 

  80. 80.

    Ahlström, A., Xia, J., Arneth, A., Luo, Y. & Smith, B. Importance of vegetation dynamics for future terrestrial carbon cycling. Environ. Res. Lett. 10, 054019 (2015).

    ADS  Article  CAS  Google Scholar 

  81. 81.

    Paris Agreement, Article 5 (UNFCCC, 2015).

  82. 82.

    Turnhout, E. et al. Envisioning REDD+ in a post-Paris era: between evolving expectations and current practice. WIREs Clim. Chang. 8, e425 (2017).

    Article  Google Scholar 

  83. 83.

    Rossi, V. et al. Could REDD+ mechanisms induce logging companies to reduce forest degradation in Central Africa? J. For. Econ. 29, 107–117 (2017).

    Google Scholar 

  84. 84.

    FORESTS: Action Statements and Action Plan (United Nations, 2014)

  85. 85.

    Transforming our world: the 2030 Agenda for Sustainable Development (United Nations, 2015).

  86. 86.

    Veldman, J. W., Silveira, F. A. O., Fleischman, F. D., Ascarrunz, N. L. & Durigan, G. Grassy biomes: an inconvenient reality for large-scale forest restoration? A comment on the essay by Chazdon and Laestadius. Am. J. Bot. 104, 649–651 (2017).

    Article  PubMed  Google Scholar 

  87. 87.

    Latawiec, A. E., Strassburg, B. B. N., Brancalion, P. H. S., Rodrigues, R. R. & Gardner, T. Creating space for large-scale restoration in tropical agricultural landscapes. Front. Ecol. Environ. 13, 211–218 (2015).

    Article  Google Scholar 

  88. 88.

    Cavaleri, M. A., Reed, S. C., Smith, W. K. & Wood, T. E. Urgent need for warming experiments in tropical forests. Glob. Chang. Biol. 21, 2111–2121 (2015).

    ADS  Article  PubMed  Google Scholar 

  89. 89.

    Chave, J. et al. Improved allometric models to estimate the aboveground biomass of tropical trees. Glob. Chang. Biol. 20, 3177–3190 (2014).

    ADS  Article  PubMed  Google Scholar 

  90. 90.

    Doughty, C. E. et al. What controls variation in carbon use efficiency among Amazonian tropical forests? Biotropica 50, 16–25 (2018).

    Article  Google Scholar 

  91. 91.

    Nepstad, D. C., Tohver, I. M., Ray, D., Moutinho, P. & Cardinot, G. Mortality of large trees and lianas following experimental drought in an Amazon forest. Ecology 88, 2259–2269 (2007).

    Article  PubMed  Google Scholar 

Download references


The author acknowledges partial support from the Natural Environment Research Council (grant NE/R000751/1) and the UK Space Agency (grant Forests 2020).

Reviewer information

Nature thanks P. Brando, J. Chave and Y. Malhi for their contribution to the peer review of this work.

Author information



Corresponding author

Correspondence to Edward T. A. Mitchard.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mitchard, E.T.A. The tropical forest carbon cycle and climate change. Nature 559, 527–534 (2018).

Download citation


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing