Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advancing models of neural development with biomaterials

Abstract

Human pluripotent stem cells have emerged as a promising in vitro model system for studying the brain. Two-dimensional and three-dimensional cell culture paradigms have provided valuable insights into the pathogenesis of neuropsychiatric disorders, but they remain limited in their capacity to model certain features of human neural development. Specifically, current models do not efficiently incorporate extracellular matrix-derived biochemical and biophysical cues, facilitate multicellular spatio-temporal patterning, or achieve advanced functional maturation. Engineered biomaterials have the capacity to create increasingly biomimetic neural microenvironments, yet further refinement is needed before these approaches are widely implemented. This Review therefore highlights how continued progression and increased integration of engineered biomaterials may be well poised to address intractable challenges in recapitulating human neural development.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: The developmental trajectory of in vivo and in vitro model systems.
Fig. 2: Biochemical and biophysical signalling cues within the neural microenvironment.
Fig. 3: Engineered matrices to recreate ECM-derived signalling cues.
Fig. 4: Biofabrication strategies to modulate multicellular neural maturation.

References

  1. 1.

    Dolmetsch, R. & Geschwind, Daniel, H. The human brain in a dish: the promise of iPSC-derived neurons. Cell 145, 831–834 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  2. 2.

    Matthews, K., Christmas, D., Swan, J. & Sorrell, E. Animal models of depression: navigating through the clinical fog. Neurosci. Biobehav. Rev. 29, 503–513 (2005).

    PubMed  Article  Google Scholar 

  3. 3.

    Dragunow, M. The adult human brain in preclinical drug development. Nat. Rev. Drug Discov. 7, 659 (2008).

    PubMed  Article  CAS  Google Scholar 

  4. 4.

    Ghosh, A., Michalon, A., Lindemann, L., Fontoura, P. & Santarelli, L. Drug discovery for autism spectrum disorder: challenges and opportunities. Nat. Rev. Drug Discov. 12, 777 (2013).

    PubMed  Article  CAS  Google Scholar 

  5. 5.

    Waterston, R. H. et al. Initial sequencing and comparative analysis of the mouse genome. Nature 420, 520–562 (2002).

    PubMed  Article  CAS  Google Scholar 

  6. 6.

    Rakic, P. Evolution of the neocortex: a perspective from developmental biology. Nat. Rev. Neurosci. 10, 724–735 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. 8.

    Herculano-Houzel, S. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Herculano-Houzel, S., Mota, B. & Lent, R. Cellular scaling rules for rodent brains. Proc. Natl Acad. Sci. USA 103, 12138–12143 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  10. 10.

    Schubert, D., Martens, G. J. M. & Kolk, S. M. Molecular underpinnings of prefrontal cortex development in rodents provide insights into the etiology of neurodevelopmental disorders. Mol. Psychiatry 20, 795 (2014).

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Rakic, P. A small step for the cell, a giant leap for mankind: a hypothesis of neocortical expansion during evolution. Trends Neurosci. 18, 383–388 (1995).

    PubMed  Article  CAS  Google Scholar 

  12. 12.

    Molnár, Z. et al. New insights into the development of the human cerebral cortex. J. Anat. 235, 432–451 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Roberts, A. C. & Clarke, H. F. Why we need nonhuman primates to study the role of ventromedial prefrontal cortex in the regulation of threat- and reward-elicited responses. Proc. Natl Acad. Sci. USA 116, 26297 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  14. 14.

    Izpisua Belmonte, J. C. et al. Brains, genes, and primates. Neuron 86, 617–631 (2015).

    PubMed  Article  CAS  Google Scholar 

  15. 15.

    Silbereis, JohnC., Pochareddy, S., Zhu, Y., Li, M. & Sestan, N. The cellular and molecular landscapes of the developing human central nervous system. Neuron 89, 248–268 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. 16.

    Otani, T., Marchetto, Maria, C., Gage, Fred, H., Simons, Benjamin, D. & Livesey, Frederick, J. 2D and 3D stem cell models of primate cortical development identify species-specific differences in progenitor behavior contributing to brain size. Cell Stem Cell 18, 467–480 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. 17.

    Sousa, A. M. M., Meyer, K. A., Santpere, G., Gulden, F. O. & Sestan, N. Evolution of the human nervous system function, structure, and development. Cell 170, 226–247 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. 18.

    Vrselja, Z. et al. Restoration of brain circulation and cellular functions hours post-mortem. Nature 568, 336–343 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. 19.

    Schwarz, N. et al. Human cerebrospinal fluid promotes long-term neuronal viability and network function in human neocortical organotypic brain slice cultures. Sci. Rep. 7, 12249 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  20. 20.

    Andersson, M. et al. Optogenetic control of human neurons in organotypic brain cultures. Sci. Rep. 6, 24818 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. 21.

    Gibbons, H. M. et al. Cellular composition of human glial cultures from adult biopsy brain tissue. J. Neurosci. Methods 166, 89–98 (2007).

    PubMed  Article  CAS  Google Scholar 

  22. 22.

    Park, T. I.-H. et al. Adult human brain neural progenitor cells (NPCs) and fibroblast-like cells have similar properties in vitro but only NPCs differentiate into neurons. PLoS ONE 7, e37742 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. 23.

    Linden, D. E. J. The challenges and promise of neuroimaging in psychiatry. Neuron 73, 8–22 (2012).

    PubMed  Article  CAS  Google Scholar 

  24. 24.

    Alda, M. Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol. Psychiatry 20, 661–670 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. 25.

    Braun, U. et al. From maps to multi-dimensional network mechanisms of mental disorders. Neuron 97, 14–31 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  26. 26.

    Ardhanareeswaran, K., Mariani, J., Coppola, G., Abyzov, A. & Vaccarino, F. M. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nat. Rev. Neurol. 13, 265–278 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  27. 27.

    Wang, M., Zhang, L. & Gage, F. H. Modeling neuropsychiatric disorders using human induced pluripotent stem cells. Protein Cell 11, 45–59 (2020).

    PubMed  Article  CAS  Google Scholar 

  28. 28.

    Chambers, S. M. et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol. 27, 275 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. 29.

    Li, W. et al. Rapid induction and long-term self-renewal of primitive neural precursors from human embryonic stem cells by small molecule inhibitors. Proc. Natl Acad. Sci. USA 108, 8299–8304 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Shi, Y., Kirwan, P., Smith, J., Robinson, H. P. C. & Livesey, F. J. Human cerebral cortex development from pluripotent stem cells to functional excitatory synapses. Nat. Neurosci. 15, 477–486 (2012).

    PubMed  Article  CAS  Google Scholar 

  31. 31.

    Li, X.-J. et al. Specification of motoneurons from human embryonic stem cells. Nat. Biotechnol. 23, 215–221 (2005).

    PubMed  Article  CAS  Google Scholar 

  32. 32.

    Shi, Y., Kirwan, P. & Livesey, F. J. Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat. Protoc. 7, 1836–1846 (2012).

    PubMed  Article  CAS  Google Scholar 

  33. 33.

    Yan, Y. et al. Efficient and rapid derivation of primitive neural stem cells and generation of brain subtype neurons from human pluripotent stem cells. Stem Cells Transl. Med. 2, 862–870 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. 34.

    Roybon, L. et al. Human stem cell-derived spinal cord astrocytes with defined mature or reactive phenotypes. Cell Rep. 4, 1035–1048 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. 35.

    Arber, C. et al. Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development 142, 1375 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. 36.

    Piao, J. et al. Human embryonic stem cell-derived oligodendrocyte progenitors remyelinate the brain and rescue behavioral deficits following radiation. Cell Stem Cell 16, 198–210 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. 37.

    Lu, J. et al. Generation of serotonin neurons from human pluripotent stem cells. Nat. Biotechnol. 34, 89–94 (2016). This is an early demonstration that human PS cells can be differentiated into serotonergic neurons in two dimensions and probed with drug candidates.

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Nolbrant, S., Heuer, A., Parmar, M. & Kirkeby, A. Generation of high-purity human ventral midbrain dopaminergic progenitors for in vitro maturation and intracerebral transplantation. Nat. Protoc. 12, 1962–1979 (2017).

    PubMed  Article  CAS  Google Scholar 

  39. 39.

    Edri, R. et al. Analysing human neural stem cell ontogeny by consecutive isolation of Notch active neural progenitors. Nat. Commun. 6, 6500 (2015).

    PubMed  Article  CAS  Google Scholar 

  40. 40.

    Close, J. L. et al. Single-cell profiling of an in vitro model of human interneuron development reveals temporal dynamics of cell type production and maturation. Neuron 93, 1035–1048.e1035 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. 41.

    Kuijlaars, J. et al. Sustained synchronized neuronal network activity in a human astrocyte co-culture system. Sci. Rep. 6, 36529 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  42. 42.

    Vatine, G. D. et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications. Cell Stem Cell 24, 995–1005.e1006 (2019).

    PubMed  Article  CAS  Google Scholar 

  43. 43.

    Rifes, P. et al. Modeling neural tube development by differentiation of human embryonic stem cells in a microfluidic WNT gradient. Nat. Biotechnol. 38, 1265–1273 (2020). This study leverages a gradient-producing microfluidic device to create human PS cell-derived neural tissue that exhibits progressive caudalization from forebrain to midbrain to hindbrain.

    PubMed  Article  CAS  Google Scholar 

  44. 44.

    Marchetto, M. C. N. et al. A model for neural development and treatment of Rett syndrome using human induced pluripotent stem cells. Cell 143, 527–539 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Pas¸ca, S. P. et al. Using iPSC-derived neurons to uncover cellular phenotypes associated with Timothy syndrome. Nat. Med. 17, 1657–1662 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  46. 46.

    Brennand, K. J. et al. Modelling schizophrenia using human induced pluripotent stem cells. Nature 473, 221–225 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. 47.

    Sheridan, S. D. et al. Epigenetic characterization of the FMR1 gene and aberrant neurodevelopment in human induced pluripotent stem cell models of fragile X syndrome. PLoS ONE 6, e26203 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  48. 48.

    Mertens, J. et al. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 527, 95–99 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  49. 49.

    Liu, X. et al. Idiopathic autism: cellular and molecular phenotypes in pluripotent stem cell-derived neurons. Mol. Neurobiol. 54, 4507–4523 (2017).

    PubMed  Article  CAS  Google Scholar 

  50. 50.

    Vierbuchen, T. et al. Direct conversion of fibroblasts to functional neurons by defined factors. Nature 463, 1035–1041 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  51. 51.

    Mertens, J. et al. Directly reprogrammed human neurons retain aging-associated transcriptomic signatures and reveal age-related nucleocytoplasmic defects. Cell Stem Cell 17, 705–718 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  52. 52.

    Huh, C. J. et al. Maintenance of age in human neurons generated by microRNA-based neuronal conversion of fibroblasts. eLife 5, e18648 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  53. 53.

    Pas¸ca, S. P., Panagiotakos, G. & Dolmetsch, R. E. Generating human neurons in vitro and using them to understand neuropsychiatric disease. Annu. Rev. Neurosci. 37, 479–501 (2014).

    PubMed  Article  CAS  Google Scholar 

  54. 54.

    Amin, N. D. & Pas¸ca, S. P. Building models of brain disorders with three-dimensional organoids. Neuron 100, 389–405 (2018).

    PubMed  Article  CAS  Google Scholar 

  55. 55.

    Chiaradia, I. & Lancaster, M. A. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat. Neurosci. 23, 1496–1508 (2020).

    PubMed  Article  CAS  Google Scholar 

  56. 56.

    Ishii, K. Reconstruction of dissociated chick brain cells in rotation-mediated culture. Cytologia 31, 89–98 (1966).

    PubMed  Article  CAS  Google Scholar 

  57. 57.

    Garber, B. B. Brain histogenesis in vitro: reconstruction of brain tissue from dissociated cells. Vitro 8, 167–177 (1972).

    Article  CAS  Google Scholar 

  58. 58.

    Reynolds, B. A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565 (1992).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. 59.

    Zhang, S.-C., Wernig, M., Duncan, I. D., Brüstle, O. & Thomson, J. A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

    PubMed  Article  CAS  Google Scholar 

  60. 60.

    Watanabe, K. et al. Directed differentiation of telencephalic precursors from embryonic stem cells. Nat. Neurosci. 8, 288–296 (2005).

    PubMed  Article  CAS  Google Scholar 

  61. 61.

    Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    PubMed  Article  CAS  Google Scholar 

  62. 62.

    Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011). This is early demonstration that suspended human PS cell-derived neural retina exhibits patterns of self-patterning and self-formation.

    PubMed  Article  CAS  Google Scholar 

  63. 63.

    Lancaster, M. A. et al. Cerebral organoids model human brain development and microcephaly. Nature 501, 373 (2013).

    PubMed  Article  CAS  Google Scholar 

  64. 64.

    Camp, J. G. et al. Human cerebral organoids recapitulate gene expression programs of fetal neocortex development. Proc. Natl Acad. Sci. USA 112, 15672 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  65. 65.

    Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. 66.

    Renner, M. et al. Self-organized developmental patterning and differentiation in cerebral organoids. EMBO J. 36, 1316–1329 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. 67.

    Tanaka, Y., Cakir, B., Xiang, Y., Sullivan, G. J. & Park, I.-H. Synthetic analyses of single-cell transcriptomes from multiple brain organoids and fetal brain. Cell Rep. 30, 1682–1689.e1683 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. 68.

    Pasca, A. M. et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture. Nat. Methods 12, 671–678 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. 69.

    Mariani, J. et al. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162, 375–390 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. 70.

    Sakaguchi, H. et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue. Nat. Commun. 6, 8896 (2015).

    PubMed  Article  CAS  Google Scholar 

  71. 71.

    Qian, X. et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 165, 1238–1254 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. 72.

    Jo, J. et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons. Cell Stem Cell 19, 248–257 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. 73.

    Sloan, S. A. et al. Human astrocyte maturation captured in 3D cerebral cortical spheroids derived from pluripotent stem cells. Neuron 95, 779–790.e776 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. 74.

    Yoon, S.-J. et al. Reliability of human cortical organoid generation. Nat. Methods 16, 75–78 (2019).

    PubMed  Article  CAS  Google Scholar 

  75. 75.

    Madhavan, M. et al. Induction of myelinating oligodendrocytes in human cortical spheroids. Nat. Methods 15, 700–706 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  76. 76.

    Marton, R. M. et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures. Nat. Neurosci. 22, 484–491 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  77. 77.

    Birey, F. et al. Assembly of functionally integrated human forebrain spheroids. Nature 545, 54 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. 78.

    Xiang, Y. et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21, 383–398.e387 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. 79.

    Bagley, J. A., Reumann, D., Bian, S., Lévi-Strauss, J. & Knoblich, J. A. Fused cerebral organoids model interactions between brain regions. Nat. Methods 14, 743–751 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  80. 80.

    Xiang, Y. et al. hESC-Derived thalamic organoids form reciprocal projections when fused with cortical organoids. Cell Stem Cell 24, 487–497.e487 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  81. 81.

    Miura, Y. et al. Generation of human striatal organoids and cortico-striatal assembloids from human pluripotent stem cells. Nat. Biotechnol. 38, 1421–1430 (2020).

    PubMed  Article  CAS  Google Scholar 

  82. 82.

    Lin, Y.-T. et al. APOE4 causes widespread molecular and cellular alterations associated with Alzheimer’s disease phenotypes in human iPSC-derived brain cell types. Neuron 98, 1141–1154.e1147 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. 83.

    Andersen, J. et al. Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913–1929.e1926 (2020). This study creates the first multisynaptic human circuit consisting of cortical, spinal and skeletal muscle spheroids.

    PubMed  Article  CAS  Google Scholar 

  84. 84.

    Li, R. et al. Recapitulating cortical development with organoid culture in vitro and modeling abnormal spindle-like (ASPM related primary) microcephaly disease. Protein Cell 8, 823–833 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  85. 85.

    Ogawa, J., Pao, G. M., Shokhirev, M. N. & Verma, I. M. Glioblastoma model using human cerebral organoids. Cell Rep. 23, 1220–1229 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. 86.

    Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  87. 87.

    Bershteyn, M. et al. Human iPSC-derived cerebral organoids model cellular features of lissencephaly and reveal prolonged mitosis of outer radial glia. Cell Stem Cell 20, 435–449.e434 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  88. 88.

    Khan, T. A. et al. Neuronal defects in a human cellular model of 22q11.2 deletion syndrome. Nat. Med. 26, 1888–1898 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  89. 89.

    Pellegrini, L. et al. Human CNS barrier-forming organoids with cerebrospinal fluid production. Science 369, eaaz5626 (2020). These authors create a choroid plexus organoid that produces cerebrospinal-like fluid and facilitates screening of drug permeation.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  90. 90.

    Mansour, A. A. et al. An in vivo model of functional and vascularized human brain organoids. Nat. Biotechnol. 36, 432–441 (2018). This study transplants human neural organoids into the mouse cerebral cortex and observes progressive neural maturation, functional vascularization and graft-to-host synaptic connectivity.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. 91.

    Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  92. 92.

    Gordon, A. et al. Long-term maturation of human cortical organoids matches key early postnatal transitions. Nat. Neurosci. 24, 331–342 (2021). This study characterizes the postnatal transition of cortical organoids at 250–300 days in culture.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  93. 93.

    Li, Y. et al. Induction of expansion and folding in human cerebral organoids. Cell Stem Cell 20, 385–396.e383 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  94. 94.

    Karzbrun, E., Kshirsagar, A., Cohen, S. R., Hanna, J. H. & Reiner, O. Human brain organoids on a chip reveal the physics of folding. Nat. Phys. 14, 515–522 (2018). This study induces surface-level wrinkling of neural organoids encapsulated in Matrigel within a physically confining microfluidic device.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. 95.

    Iefremova, V. et al. An organoid-based model of cortical development identifies non-cell-autonomous defects in Wnt signaling contributing to Miller-Dieker syndrome. Cell Rep. 19, 50–59 (2017).

    PubMed  Article  CAS  Google Scholar 

  96. 96.

    Borrell, V. How cells fold the cerebral cortex. J. Neurosci. 38, 776 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. 97.

    Qian, X., Song, H. & Ming, G. L. Brain organoids: advances, applications and challenges. Development 146, dev166074 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  98. 98.

    Nakanishi, S. Extracellular matrix during laminar pattern formation of neocortex in normal and reeler mutant mice. Dev. Biol. 95, 305–316 (1983).

    PubMed  Article  CAS  Google Scholar 

  99. 99.

    Bignami, A. & Delpech, B. Extracellular matrix glycoprotein (hyaluronectin) in early cerebral development: immunofluorescence study of the rat embryo. Int. J. Dev. Neurosci. 3, 301–307 (1985).

    PubMed  Article  CAS  Google Scholar 

  100. 100.

    Stewart, G. R. & Pearlman, A. L. Fibronectin-like immunoreactivity in the developing cerebral cortex. J. Neurosci. 7, 3325–3333 (1987).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  101. 101.

    Hunter, D. D., Llinas, R., Ard, M., Merlie, J. P. & Sanes, J. R. Expression of s-laminin and laminin in the developing rat central nervous system. J. Comp. Neurol. 323, 238–251 (1992).

    PubMed  Article  CAS  Google Scholar 

  102. 102.

    Kostovic´, I., Judas, M., Rados, M. & Hrabac, P. Laminar organization of the human fetal cerebrum revealed by histochemical markers and magnetic resonance imaging. Cereb. Cortex 12, 536–544 (2002).

    PubMed  Article  Google Scholar 

  103. 103.

    Kostovic´, I., Išasegi, I. Ž. & Krsnik, Ž. Sublaminar organization of the human subplate: developmental changes in the distribution of neurons, glia, growing axons and extracellular matrix. J. Anat. 235, 481–506 (2019).

    PubMed  Article  CAS  Google Scholar 

  104. 104.

    Bhaduri, A. et al. Cell stress in cortical organoids impairs molecular subtype specification. Nature 578, 142–148 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. 105.

    Williams, D. F. On the nature of biomaterials. Biomaterials 30, 5897–5909 (2009).

    PubMed  Article  CAS  Google Scholar 

  106. 106.

    Zimmermann, D. R. & Dours-Zimmermann, M. T. Extracellular matrix of the central nervous system: from neglect to challenge. Histochem. Cell Biol. 130, 635–653 (2008).

    PubMed  Article  CAS  Google Scholar 

  107. 107.

    Barros, C. S., Franco, S. J. & Müller, U. Extracellular matrix: functions in the nervous system. Cold Spring Harb. Perspect. Biol. 3, a005108 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  108. 108.

    Long, K. R. & Huttner, W. B. How the extracellular matrix shapes neural development. Open. Biol. 9, 180216 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. 109.

    Mouw, J. K., Ou, G. & Weaver, V. M. Extracellular matrix assembly: a multiscale deconstruction. Nat. Rev. Mol. Cell Biol. 15, 771–785 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  110. 110.

    Dauth, S. et al. Extracellular matrix protein expression is brain region dependent. J. Comp. Neurol. 524, 1309–1336 (2016).

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Nicholson, C. & Syková, E. Extracellular space structure revealed by diffusion analysis. Trends Neurosci. 21, 207–215 (1998).

    PubMed  Article  CAS  Google Scholar 

  112. 112.

    Margolis, R. U., Margolis, R. K., Chang, L. B. & Preti, C. Glycosaminoglycans of brain during development. Biochemistry 14, 85–88 (1975).

    PubMed  Article  CAS  Google Scholar 

  113. 113.

    Okun, E. et al. TLR2 activation inhibits embryonic neural progenitor cell proliferation. J. Neurochem. 114, 462–474 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  114. 114.

    Struve, J. et al. Disruption of the hyaluronan-based extracellular matrix in spinal cord promotes astrocyte proliferation. Glia 52, 16–24 (2005).

    PubMed  Article  Google Scholar 

  115. 115.

    Khaing, Z. Z. et al. High molecular weight hyaluronic acid limits astrocyte activation and scar formation after spinal cord injury. J. Neural Eng. 8, 046033 (2011).

    PubMed  Article  Google Scholar 

  116. 116.

    Sirko, S., von Holst, A., Wizenmann, A., Götz, M. & Faissner, A. Chondroitin sulfate glycosaminoglycans control proliferation, radial glia cell differentiation and neurogenesis in neural stem/progenitor cells. Development 134, 2727 (2007).

    PubMed  Article  CAS  Google Scholar 

  117. 117.

    Tham, M. et al. CSPG is a secreted factor that stimulates neural stem cell survival possibly by enhanced EGFR signaling. PLoS ONE 5, e15341 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. 118.

    Doetsch, F., Petreanu, L., Caille, I., Garcia-Verdugo, J.-M. & Alvarez-Buylla, A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron 36, 1021–1034 (2002).

    PubMed  Article  CAS  Google Scholar 

  119. 119.

    Drago, J., Nurcombe, V. & Bartlett, P. F. Laminin through its long arm E8 fragment promotes the proliferation and differentiation of murine neuroepithelial cells in vitro. Exp. Cell Res. 192, 256–265 (1991).

    PubMed  Article  CAS  Google Scholar 

  120. 120.

    Hall, P. E., Lathia, J. D., Caldwell, M. A. & Ffrench-Constant, C. Laminin enhances the growth of human neural stem cells in defined culture media. BMC Neurosci. 9, 71 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  121. 121.

    Kerever, A. et al. Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells 25, 2146–2157 (2007).

    PubMed  Article  CAS  Google Scholar 

  122. 122.

    Stenzel, D., Wilsch-Bräuninger, M., Wong, F. K., Heuer, H. & Huttner, W. B. Integrin αβ3 and thyroid hormones promote expansion of progenitors in embryonic neocortex. Development 141, 795–806 (2014).

    PubMed  Article  CAS  Google Scholar 

  123. 123.

    Liao, H. et al. beta1 integrin-mediated effects of tenascin-r domains EGFL and FN6-8 on neural stem/progenitor cell proliferation and differentiation in vitro. J. Biol. Chem. 283, 27927–27936 (2008).

    PubMed  Article  CAS  Google Scholar 

  124. 124.

    Pesheva, P., Gloor, S., Schachner, M. & Probstmeier, R. Tenascin-R is an intrinsic autocrine factor for oligodendrocyte differentiation and promotes cell adhesion by a sulfatide-mediated mechanism. J. Neurosci. 17, 4642 (1997).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  125. 125.

    Garwood, J. et al. The extracellular matrix glycoprotein tenascin-C is expressed by oligodendrocyte precursor cells and required for the regulation of maturation rate, survival and responsiveness to platelet-derived growth factor. Eur. J. Neurosci. 20, 2524–2540 (2004).

    PubMed  Article  Google Scholar 

  126. 126.

    Czopka, T., Von Holst, A., Schmidt, G., Ffrench-Constant, C. & Faissner, A. Tenascin C and tenascin R similarly prevent the formation of myelin membranes in a RhoA-dependent manner, but antagonistically regulate the expression of myelin basic protein via a separate pathway. Glia 57, 1790–1801 (2009).

    PubMed  Article  Google Scholar 

  127. 127.

    Long, K., Moss, L., Laursen, L., Boulter, L. & Ffrench-Constant, C. Integrin signalling regulates the expansion of neuroepithelial progenitors and neurogenesis via Wnt7a and decorin. Nat. Commun. 7, 10354 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  128. 128.

    Summers, D. D. B. Degeneration and regeneration of the nervous system. Nature 125, 230–231 (1930).

    Article  Google Scholar 

  129. 129.

    Nagy, J. I., Hacking, J., Frankenstein, U. N. & Turley, E. A. Requirement of the hyaluronan receptor RHAMM in neurite extension and motility as demonstrated in primary neurons and neuronal cell lines. J. Neurosci. 15, 241 (1995).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  130. 130.

    Chen, Z.-L., Haegeli, V., Yu, H. & Strickland, S. Cortical deficiency of laminin gamma1 impairs the AKT/GSK-3beta signaling pathway and leads to defects in neurite outgrowth and neuronal migration. Dev. Biol. 327, 158–168 (2009).

    PubMed  Article  CAS  Google Scholar 

  131. 131.

    Smith-Thomas, L. C. et al. Increased axon regeneration in astrocytes grown in the presence of proteoglycan synthesis inhibitors. J. Cell Sci. 108, 1307 (1995).

    PubMed  Article  CAS  Google Scholar 

  132. 132.

    Moon, L. D. F., Asher, R. A., Rhodes, K. E. & Fawcett, J. W. Regeneration of CNS axons back to their target following treatment of adult rat brain with chondroitinase ABC. Nat. Neurosci. 4, 465–466 (2001).

    PubMed  Article  CAS  Google Scholar 

  133. 133.

    Bradbury, E. J. et al. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416, 636–640 (2002).

    PubMed  Article  CAS  Google Scholar 

  134. 134.

    Wang, H. et al. Chondroitin-4-sulfation negatively regulates axonal guidance and growth. J. Cell Sci. 121, 3083–3091 (2008).

    PubMed  Article  CAS  Google Scholar 

  135. 135.

    Szabó, A. et al. In vivo confinement promotes collective migration of neural crest cells. J. Cell Biol. 213, 543–555 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. 136.

    Luckenbill-Edds, L. & Carrington, J. L. Effect of hyaluronic acid on the emergence of neural crest cells from the neural tube of the quail, Coturnix coturnix japonica. Cell Tissue Res. 252, 573–579 (1988).

    PubMed  Article  CAS  Google Scholar 

  137. 137.

    Lindwall, C., Olsson, M., Osman, A. M., Kuhn, H. G. & Curtis, M. A. Selective expression of hyaluronan and receptor for hyaluronan mediated motility (Rhamm) in the adult mouse subventricular zone and rostral migratory stream and in ischemic cortex. Brain Res. 1503, 62–77 (2013).

    PubMed  Article  CAS  Google Scholar 

  138. 138.

    Saghatelyan, A., de Chevigny, A., Schachner, M. & Lledo, P.-M. Tenascin-R mediates activity-dependent recruitment of neuroblasts in the adult mouse forebrain. Nat. Neurosci. 7, 347–356 (2004).

    PubMed  Article  CAS  Google Scholar 

  139. 139.

    Tsuda, S. et al. FAK-mediated extracellular signals are essential for interkinetic nuclear migration and planar divisions in the neuroepithelium. J. Cell Sci. 123, 484 (2010).

    PubMed  Article  CAS  Google Scholar 

  140. 140.

    Relvas, J. B. et al. Expression of dominant-negative and chimeric subunits reveals an essential role for beta1 integrin during myelination. Curr. Biol. 11, 1039–1043 (2001).

    PubMed  Article  CAS  Google Scholar 

  141. 141.

    Chun, S. J., Rasband, M. N., Sidman, R. L., Habib, A. A. & Vartanian, T. Integrin-linked kinase is required for laminin-2-induced oligodendrocyte cell spreading and CNS myelination. J. Cell Biol. 163, 397–408 (2003).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  142. 142.

    Barros, C. S. et al. Beta1 integrins are required for normal CNS myelination and promote AKT-dependent myelin outgrowth. Development 136, 2717–2724 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  143. 143.

    Garcion, E., Halilagic, A., Faissner, A. & ffrench-Constant, C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 131, 3423 (2004).

    PubMed  Article  CAS  Google Scholar 

  144. 144.

    Hockfield, S., Kalb, R. G., Zaremba, S. & Fryer, H. Expression of neural proteoglycans correlates with the acquisition of mature neuronal properties in the mammalian brain. Cold Spring Harb. Symp. Quant. Biol. 55, 505–514 (1990).

    PubMed  Article  CAS  Google Scholar 

  145. 145.

    Yamaguchi, Y. Lecticans: organizers of the brain extracellular matrix. Cell. Mol. Life Sci. 57, 276–289 (2000).

    PubMed  Article  CAS  Google Scholar 

  146. 146.

    Rauch, U. Extracellular matrix components associated with remodeling processes in brain. Cell. Mol. Life Sci. 61, 2031–2045 (2004).

    PubMed  Article  CAS  Google Scholar 

  147. 147.

    Galtrey, C. M. & Fawcett, J. W. The role of chondroitin sulfate proteoglycans in regeneration and plasticity in the central nervous system. Brain Res. Rev. 54, 1–18 (2007).

    PubMed  Article  CAS  Google Scholar 

  148. 148.

    Barritt, A. W. et al. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J. Neurosci. 26, 10856 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  149. 149.

    Ranga, A. et al. Neural tube morphogenesis in synthetic 3D microenvironments. Proc. Natl Acad. Sci. 113, E6831 (2016). This study uses synthetic biomaterials to systematically characterize the effects of distinct ECM-derived signalling cues on 3D neuroepithelial cysts.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  150. 150.

    Simão, D. et al. Recapitulation of human neural microenvironment signatures in iPSC-derived NPC 3D differentiation. Stem Cell Rep. 11, 552–564 (2018).

    Article  CAS  Google Scholar 

  151. 151.

    Kratochvil, M. J. et al. Engineered materials for organoid systems. Nat. Rev. Mater. 4, 606–622 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. 152.

    Luo, C. et al. Cerebral organoids recapitulate epigenomic signatures of the human fetal brain. Cell Rep. 17, 3369–3384 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  153. 153.

    Bian, S. et al. Genetically engineered cerebral organoids model brain tumor formation. Nat. Methods 15, 631–639 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  154. 154.

    Bandtlow, C. E. & Zimmermann, D. R. Proteoglycans in the developing brain: new conceptual insights for old proteins. Physiological. Rev. 80, 1267–1290 (2000).

    Article  CAS  Google Scholar 

  155. 155.

    Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).

    PubMed  Article  CAS  Google Scholar 

  156. 156.

    Miyata, S. & Kitagawa, H. Formation and remodeling of the brain extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan. Biochim. Biophys. Acta Gen. Subj. 1861, 2420–2434 (2017).

    PubMed  Article  CAS  Google Scholar 

  157. 157.

    Vukicevic, S. et al. Identification of multiple active growth factors in basement membrane Matrigel suggests caution in interpretation of cellular activity related to extracellular matrix components. Exp. Cell Res. 202, 1–8 (1992).

    PubMed  Article  CAS  Google Scholar 

  158. 158.

    Ma, W. et al. Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev. Biol. 8, 90 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  159. 159.

    Kothapalli, C. R. & Kamm, R. D. 3D matrix microenvironment for targeted differentiation of embryonic stem cells into neural and glial lineages. Biomaterials 34, 5995–6007 (2013).

    PubMed  Article  CAS  Google Scholar 

  160. 160.

    Baron-Van Evercooren, A. et al. Nerve growth factor, laminin, and fibronectin promote neurite growth in human fetal sensory ganglia cultures. J. Neurosci. Res. 8, 179–193 (1982).

    PubMed  Article  CAS  Google Scholar 

  161. 161.

    Rogers, S. L., Letourneau, P. C., Palm, S. L., McCarthy, J. & Furcht, L. T. Neurite extension by peripheral and central nervous system neurons in response to substratum-bound fibronectin and laminin. Dev. Biol. 98, 212–220 (1983).

    PubMed  Article  CAS  Google Scholar 

  162. 162.

    Manthorpe, M. et al. Laminin promotes neuritic regeneration from cultured peripheral and central neurons. J. Cell Biol. 97, 1882–1890 (1983).

    PubMed  Article  CAS  Google Scholar 

  163. 163.

    Nasu, M. et al. Robust formation and maintenance of continuous stratified cortical neuroepithelium by laminin-containing matrix in mouse ES cell culture. PLoS ONE 7, e53024 (2013). In this study, the authors add exogenous laminin to 3D cortical epithelium to induce the formation of a polarized neuroepithelium.

    Article  CAS  Google Scholar 

  164. 164.

    Bozza, A. et al. Neural differentiation of pluripotent cells in 3D alginate-based cultures. Biomaterials 35, 4636–4645 (2014).

    PubMed  Article  CAS  Google Scholar 

  165. 165.

    Lindborg, B. A. et al. Rapid induction of cerebral organoids from human induced pluripotent stem cells using a chemically defined hydrogel and defined cell culture medium. Stem Cell Transl. Med. 5, 970–979 (2016).

    Article  CAS  Google Scholar 

  166. 166.

    Sood, D. et al. Functional maturation of human neural stem cells in a 3D bioengineered brain model enriched with fetal brain-derived matrix. Sci. Rep. 9, 17874 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  167. 167.

    Zhang, Z.-N. et al. Layered hydrogels accelerate iPSC-derived neuronal maturation and reveal migration defects caused by MeCP2 dysfunction. Proc. Natl Acad. Sci. USA 113, 3185 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  168. 168.

    Agmon, G. & Christman, K. L. Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr. Opin. Solid State Mater. Sci. 20, 193–201 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  169. 169.

    Lam, J., Carmichael, S. T., Lowry, W. E. & Segura, T. Hydrogel design of experiments methodology to optimize hydrogel for iPSC-NPC culture. Adv. Healthc. Mater. 4, 534–539 (2015). The authors leverage statistics-guided experimental design to efficiently screen the effects of adhesive ligands on NPCs.

    PubMed  Article  CAS  Google Scholar 

  170. 170.

    Ranga, A. et al. 3D niche microarrays for systems-level analyses of cell fate. Nat. Commun. 5, 4324 (2014).

    PubMed  Article  CAS  Google Scholar 

  171. 171.

    Freeman, R. et al. Instructing cells with programmable peptide DNA hybrids. Nat. Commun. 8, 15982 (2017). This study demonstrates a biomaterial approach to achieving temporally dynamic presentation of ECM-derived biochemical signals.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  172. 172.

    Galarza, S., Crosby, A. J., Pak, C. & Peyton, S. R. Control of astrocyte quiescence and activation in a synthetic brain hydrogel. Adv. Healthc. Mater. 9, 1901419 (2020).

    Article  CAS  Google Scholar 

  173. 173.

    Lutolf, M. P. & Hubbell, J. A. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005).

    PubMed  Article  CAS  Google Scholar 

  174. 174.

    Aisenbrey, E. A. & Murphy, W. L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5, 539–551 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  175. 175.

    Loebel, C., Mauck, R. L. & Burdick, J. A. Local nascent protein deposition and remodelling guide mesenchymal stromal cell mechanosensing and fate in three-dimensional hydrogels. Nat. Mater. 18, 883–891 (2019). The authors use bio-orthogonal chemistry to identify nascent ECM protein secretion.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  176. 176.

    Tekin, H. et al. Effects of 3D culturing conditions on the transcriptomic profile of stem-cell-derived neurons. Nat. Biomed. Eng. 2, 540–554 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  177. 177.

    Co, J. Y. et al. Controlling epithelial polarity: a human enteroid model for host-pathogen interactions. Cell Rep. 26, 2509–2520.e2504 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  178. 178.

    Brandenberg, N. et al. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4, 863–874 (2020).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  179. 179.

    Sengupta, D. & Heilshorn, S. C. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng. Part. B: Rev. 16, 285–293 (2010).

    Article  CAS  Google Scholar 

  180. 180.

    Cai, L. & Heilshorn, S. C. Designing ECM-mimetic materials using protein engineering. Acta Biomater. 10, 1751–1760 (2014).

    PubMed  Article  CAS  Google Scholar 

  181. 181.

    Chighizola, M. et al. Mechanotransduction in neuronal cell development and functioning. Biophys. Rev. 11, 701–720 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  182. 182.

    Barnes, J. M., Przybyla, L. & Weaver, V. M. Tissue mechanics regulate brain development, homeostasis and disease. J. Cell Sci. 130, 71–82 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  183. 183.

    Javier-Torrent, M., Zimmer-Bensch, G. & Nguyen, L. Mechanical forces orchestrate brain development. Trends Neurosci. 44, 110–121 (2021).

    PubMed  Article  CAS  Google Scholar 

  184. 184.

    Elkin, B. S., Azeloglu, E. U., Costa, K. D. & Morrison, B. 3rd. Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J. Neurotrauma 24, 812–822 (2007).

    PubMed  Article  Google Scholar 

  185. 185.

    Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    PubMed  Article  CAS  Google Scholar 

  186. 186.

    Seidlits, S. K. et al. The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 31, 3930–3940 (2010).

    PubMed  Article  CAS  Google Scholar 

  187. 187.

    Xu, Z., Chen, Y. & Chen, Y. Spatiotemporal regulation of Rho GTPases in neuronal migration. Cells 8, 568 (2019).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  188. 188.

    Campos, L. S. et al. Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131, 3433–3444 (2004).

    PubMed  Article  CAS  Google Scholar 

  189. 189.

    Koser, D. E. et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  190. 190.

    Kilinc, D. The emerging role of mechanics in synapse formation and plasticity. Front. Cell Neurosci. 12, 483 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  191. 191.

    Gefen, A. & Margulies, S. S. Are in vivo and in situ brain tissues mechanically similar? J. Biomech. 37, 1339–1352 (2004).

    PubMed  Article  Google Scholar 

  192. 192.

    Budday, S. et al. Rheological characterization of human brain tissue. Acta Biomater. 60, 315–329 (2017).

    PubMed  Article  CAS  Google Scholar 

  193. 193.

    Saha, K. et al. Substrate modulus directs neural stem cell behavior. Biophys. J. 95, 4426–4438 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  194. 194.

    Butcher, D. T., Alliston, T. & Weaver, V. M. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9, 108–122 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  195. 195.

    Musah, S. et al. Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc. Natl Acad. Sci. USA 111, 13805 (2014). This study reveals that material stiffness can bias differentiation of human ES cells into a neural cell fate.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  196. 196.

    Rammensee, S., Kang, M. S., Georgiou, K., Kumar, S. & Schaffer, D. V. Dynamics of mechanosensitive neural stem cell differentiation. Stem Cell 35, 497–506 (2017). This study identifies a temporal window during which variations in ECM stiffness affected neural lineage commitment.

    Article  CAS  Google Scholar 

  197. 197.

    Dupont, S. et al. Role of YAP/TAZ in mechanotransduction. Nature 474, 179–183 (2011).

    PubMed  Article  CAS  Google Scholar 

  198. 198.

    Brusatin, G., Panciera, T., Gandin, A., Citron, A. & Piccolo, S. Biomaterials and engineered microenvironments to control YAP/TAZ-dependent cell behaviour. Nat. Mater. 17, 1063–1075 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  199. 199.

    Banerjee, A. et al. The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30, 4695–4699 (2009).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  200. 200.

    Keung, A. J., de Juan-Pardo, E. M., Schaffer, D. V. & Kumar, S. Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29, 1886–1897 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  201. 201.

    Kang, P. H., Schaffer, D. V. & Kumar, S. Angiomotin links ROCK and YAP signaling in mechanosensitive differentiation of neural stem cells. Mol. Biol. Cell 31, 386–396 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  202. 202.

    Green, M. A., Bilston, L. E. & Sinkus, R. In vivo brain viscoelastic properties measured by magnetic resonance elastography. NMR Biomed. 21, 755–764 (2008).

    PubMed  Article  Google Scholar 

  203. 203.

    Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  204. 204.

    Zhao, X., Huebsch, N., Mooney, D. J. & Suo, Z. Stress-relaxation behavior in gels with ionic and covalent crosslinks. J. Appl. Phys. 107, 063509 (2010).

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  205. 205.

    Chaudhuri, O. Viscoelastic hydrogels for 3D cell culture. Biomater. Sci. 5, 1480–1490 (2017).

    PubMed  Article  CAS  Google Scholar 

  206. 206.

    Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    PubMed  Article  CAS  Google Scholar 

  207. 207.

    Sack, I. et al. The impact of aging and gender on brain viscoelasticity. NeuroImage 46, 652–657 (2009).

    PubMed  Article  Google Scholar 

  208. 208.

    Streitberger, K.-J. et al. Brain viscoelasticity alteration in chronic-progressive multiple sclerosis. PLoS ONE 7, e29888 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  209. 209.

    Darnell, M. et al. Material microenvironmental properties couple to induce distinct transcriptional programs in mammalian stem cells. Proc. Natl Acad. Sci. USA 115, E8368 (2018). This study reveals that culturing human NPCs in 3D biomaterials with different stress relaxation rates yields a high number of differentially expressed genes, highlighting the potential role of stress relaxation in NPC mechanosignalling.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  210. 210.

    Baker, B. M. & Chen, C. S. Deconstructing the third dimension: how 3D culture microenvironments alter cellular cues. J. Cell Sci. 125, 3015–3024 (2012).

    PubMed  PubMed Central  CAS  Google Scholar 

  211. 211.

    Madl, C. M. et al. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16, 1233 (2017). This study identifies cell-mediated biomaterial degradation and the resultant increase in cell–cell contact as critical for the maintenance of stemness in mouse NSCs.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  212. 212.

    Madl, C. M., LeSavage, B. L., Dewi, R. E., Lampe, K. J. & Heilshorn, S. C. Matrix remodeling enhances the differentiation capacity of neural progenitor cells in 3D hydrogels. Adv. Sci. 6, 1801716 (2019).

    Article  CAS  Google Scholar 

  213. 213.

    Peerani, R. et al. Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26, 4744–4755 (2007).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  214. 214.

    Bauwens, C. L. et al. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cell 26, 2300–2310 (2008).

    Article  Google Scholar 

  215. 215.

    Sakai, Y., Yoshiura, Y. & Nakazawa, K. Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. J. Biosci. Bioeng. 111, 85–91 (2011).

    PubMed  Article  CAS  Google Scholar 

  216. 216.

    Warmflash, A., Sorre, B., Etoc, F., Siggia, E. D. & Brivanlou, A. H. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11, 847–854 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  217. 217.

    Etoc, F. et al. A balance between secreted inhibitors and edge sensing controls gastruloid self-organization. Dev. Cell 39, 302–315 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  218. 218.

    His, W. Unsere Körperform und das physiologische Problem ihrer Enstehung: Briefe an einen Befreundeten Naturforscher (F.C.W.Vogel, 1874).

  219. 219.

    Vijayraghavan, D. S. & Davidson, L. A. Mechanics of neurulation: from classical to current perspectives on the physical mechanics that shape, fold, and form the neural tube. Birth Defects Res. 109, 153–168 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  220. 220.

    Xue, X. et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells. Nat. Mater. 17, 633–641 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  221. 221.

    Britton, G., Heemskerk, I., Hodge, R., Qutub, A. A. & Warmflash, A. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm. Development 146, dev179093 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  222. 222.

    Knight, G. T. et al. Engineering induction of singular neural rosette emergence within hPSC-derived tissues. eLife 7, e37549 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  223. 223.

    Sha, J., Lippmann, E. S., McNulty, J., Ma, Y. & Ashton, R. S. Sequential nucleophilic substitutions permit orthogonal click functionalization of multicomponent PEG brushes. Biomacromolecules 14, 3294–3303 (2013).

    PubMed  Article  CAS  Google Scholar 

  224. 224.

    Knight, G. T., Klann, T., McNulty, J. D. & Ashton, R. S. Fabricating complex culture substrates using robotic microcontact printing (R-µCP) and sequential nucleophilic substitution. J. Vis. Exp. 92, e52186 (2014).

    Google Scholar 

  225. 225.

    Lancaster, M. A. et al. Guided self-organization and cortical plate formation in human brain organoids. Nat. Biotechnol. 35, 659–666 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  226. 226.

    Iwashita, M., Kataoka, N., Toida, K. & Kosodo, Y. Systematic profiling of spatiotemporal tissue and cellular stiffness in the developing brain. Development 141, 3793 (2014). The authors use atomic force microscopy to analyse the mechanical properties of the mouse embryonic cerebral cortex and find that stiffness changes over the course of development and across different subregions.

    PubMed  Article  CAS  Google Scholar 

  227. 227.

    Ondeck, M. G. et al. Dynamically stiffened matrix promotes malignant transformation of mammary epithelial cells via collective mechanical signaling. Proc. Natl Acad. Sci. USA 116, 3502 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  228. 228.

    Liu, H.-Y. et al. Enzyme-mediated stiffening hydrogels for probing activation of pancreatic stellate cells. Acta Biomater. 48, 258–269 (2017).

    PubMed  Article  CAS  Google Scholar 

  229. 229.

    Giachini, P. A. G. S. et al. Additive manufacturing of cellulose-based materials with continuous, multidirectional stiffness gradients. Sci. Adv. 6, eaay0929 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  230. 230.

    Major, L. G. et al. Volume adaptation controls stem cell mechanotransduction. ACS Appl. Mater. Interfaces 11, 45520–45530 (2019).

    PubMed  Article  CAS  Google Scholar 

  231. 231.

    Dou, J., Mao, S., Li, H. & Lin, J.-M. Combination stiffness gradient with chemical stimulation directs glioma cell migration on a microfluidic chip. Anal. Chem. 92, 892–898 (2020).

    PubMed  Article  CAS  Google Scholar 

  232. 232.

    Kim, T. H. et al. Creating stiffness gradient polyvinyl alcohol hydrogel using a simple gradual freezing–thawing method to investigate stem cell differentiation behaviors. Biomaterials 40, 51–60 (2015).

    PubMed  Article  CAS  Google Scholar 

  233. 233.

    Stukel, J. M. & Willits, R. K. Mechanotransduction of neural cells through cell–substrate interactions. Tissue Eng. B: Rev. 22, 173–182 (2015).

    Article  CAS  Google Scholar 

  234. 234.

    Zheng, J. et al. Tensile regulation of axonal elongation and initiation. J. Neurosci. 11, 1117–1125 (1991).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  235. 235.

    Bard, L. et al. A molecular clutch between the actin flow and n-cadherin adhesions drives growth cone migration. J. Neurosci. 28, 5879 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  236. 236.

    Arulmoli, J. et al. Static stretch affects neural stem cell differentiation in an extracellular matrix-dependent manner. Sci. Rep. 5, 8499 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  237. 237.

    Sawamoto, K. et al. New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311, 629 (2006).

    PubMed  Article  CAS  Google Scholar 

  238. 238.

    Guirao, B. et al. Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat. Cell Biol. 12, 341–350 (2010).

    PubMed  Article  CAS  Google Scholar 

  239. 239.

    Maoz, B. M. et al. A linked organ-on-chip model of the human neurovascular unit reveals the metabolic coupling of endothelial and neuronal cells. Nat. Biotechnol. 36, 865–874 (2018).

    PubMed  Article  CAS  Google Scholar 

  240. 240.

    Herland, A. et al. Distinct contributions of astrocytes and pericytes to neuroinflammation identified in a 3D human blood-brain barrier on a chip. PLoS ONE 11, e0150360 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  241. 241.

    Linville, R. M. et al. Human iPSC-derived blood-brain barrier microvessels: validation of barrier function and endothelial cell behavior. Biomaterials 190–191, 24–37 (2019).

    PubMed  Article  CAS  Google Scholar 

  242. 242.

    Llinares-Benadero, C. & Borrell, V. Deconstructing cortical folding: genetic, cellular and mechanical determinants. Nat. Rev. Neurosci. 20, 161–176 (2019).

    PubMed  Article  CAS  Google Scholar 

  243. 243.

    Mota, B. & Herculano-Houzel, S. Cortical folding scales universally with surface area and thickness, not number of neurons. Science 349, 74 (2015).

    PubMed  Article  CAS  Google Scholar 

  244. 244.

    Kroenke, C. D. & Bayly, P. V. How forces fold the cerebral cortex. J. Neurosci. 38, 767 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  245. 245.

    Long, K. R. et al. Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid-dependent folding of the developing human neocortex. Neuron 99, 702–719.e706 (2018). This study identifies neural ECM components of the HLC complex in the process of cortical folding.

    PubMed  Article  CAS  Google Scholar 

  246. 246.

    Sagner, A. & Briscoe, J. Morphogen interpretation: concentration, time, competence, and signaling dynamics. WIREs Dev. Biol. 6, e271 (2017).

    Article  Google Scholar 

  247. 247.

    Cadwell, C. R., Bhaduri, A., Mostajo-Radji, M. A., Keefe, M. G. & Nowakowski, T. J. Development and arealization of the cerebral cortex. Neuron 103, 980–1004 (2019).

    PubMed  Article  CAS  Google Scholar 

  248. 248.

    Belair, D. G., Le, N. N. & Murphy, W. L. Design of growth factor sequestering biomaterials. Chem. Commun. 50, 15651–15668 (2014).

    Article  CAS  Google Scholar 

  249. 249.

    Brudno, Y. & Mooney, D. J. On-demand drug delivery from local depots. J. Control. Release 219, 8–17 (2015).

    PubMed  Article  CAS  Google Scholar 

  250. 250.

    Rambhia, K. J. & Ma, P. X. Controlled drug release for tissue engineering. J. Control. Release 219, 119–128 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  251. 251.

    Lotz, S. et al. Sustained levels of FGF2 maintain undifferentiated stem cell cultures with biweekly feeding. PLoS ONE 8, e56289 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  252. 252.

    Agbay, A., De La Vega, L., Nixon, G. & Willerth, S. Guggulsterone-releasing microspheres direct the differentiation of human induced pluripotent stem cells into neural phenotypes. Biomed. Mater. 13, 034104 (2018).

    PubMed  Article  Google Scholar 

  253. 253.

    Nguyen, E. H., Schwartz, M. P. & Murphy, W. L. Biomimetic approaches to control soluble concentration gradients in biomaterials. Macromol. Biosci. 11, 483–492 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  254. 254.

    Toh, A. G. G., Wang, Z. P., Yang, C. & Nguyen, N.-T. Engineering microfluidic concentration gradient generators for biological applications. Microfluid. Nanofluidics 16, 1–18 (2014).

    Article  Google Scholar 

  255. 255.

    Yang, K. et al. Recapitulation of in vivo-like paracrine signals of human mesenchymal stem cells for functional neuronal differentiation of human neural stem cells in a 3D microfluidic system. Biomaterials 63, 177–188 (2015).

    PubMed  Article  CAS  Google Scholar 

  256. 256.

    Romano, N. H., Lampe, K. J., Xu, H., Ferreira, M. M. & Heilshorn, S. C. Microfluidic gradients reveal enhanced neurite outgrowth but impaired guidance within 3D matrices with high integrin ligand densities. Small 11, 722–730 (2015).

    PubMed  Article  CAS  Google Scholar 

  257. 257.

    Park, S. E., Georgescu, A. & Huh, D. Organoids-on-a-chip. Science 364, 960 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  258. 258.

    Hofer, M. & Lutolf, M. P. Engineering organoids. Nat. Rev. Mater. 6, 402–420 (2021).

    Article  CAS  Google Scholar 

  259. 259.

    Garreta, E. et al. Rethinking organoid technology through bioengineering. Nat. Mater. 20, 145–155 (2021).

    PubMed  Article  CAS  Google Scholar 

  260. 260.

    Leijten, J. et al. Spatially and temporally controlled hydrogels for tissue engineering. Mater. Sci. Eng. R: Rep. 119, 1–35 (2017).

    Article  Google Scholar 

  261. 261.

    Ruskowitz, E. R. & DeForest, C. A. Photoresponsive biomaterials for targeted drug delivery and 4D cell culture. Nat. Rev. Mater. 3, 17087 (2018).

    Article  CAS  Google Scholar 

  262. 262.

    Leipzig, N. D., Wylie, R. G., Kim, H. & Shoichet, M. S. Differentiation of neural stem cells in three-dimensional growth factor-immobilized chitosan hydrogel scaffolds. Biomaterials 32, 57–64 (2011).

    PubMed  Article  CAS  Google Scholar 

  263. 263.

    Ham, T. R., Cox, D. G. & Leipzig, N. D. Concurrent delivery of soluble and immobilized proteins to recruit and differentiate neural stem cells. Biomacromolecules 20, 3445–3452 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  264. 264.

    Wylie, R. G. et al. Spatially controlled simultaneous patterning of multiple growth factors in three-dimensional hydrogels. Nat. Mater. 10, 799–806 (2011).

    PubMed  Article  CAS  Google Scholar 

  265. 265.

    Broguiere, N. et al. Morphogenesis guided by 3D patterning of growth factors in biological matrices. Adv. Mater. https://doi.org/10.1002/adma.201908299 (2020).

    Article  PubMed  Google Scholar 

  266. 266.

    Joung, D. et al. 3D printed stem-cell derived neural progenitors generate spinal cord scaffolds. Adv. Funct. Mater. 28, 1801850 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  267. 267.

    Hull, S. M. et al. 3D bioprinting using UNIversal orthogonal network (UNION) bioinks. Adv. Funct. Mater. https://doi.org/10.1002/adfm.202007983 (2020).

    Article  PubMed  Google Scholar 

  268. 268.

    Lindsay, C. D., Roth, J. G., LeSavage, B. L. & Heilshorn, S. C. Bioprinting of stem cell expansion lattices. Acta Biomater. 95, 225–235 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  269. 269.

    Nunamaker, E. A., Purcell, E. K. & Kipke, D. R. In vivo stability and biocompatibility of implanted calcium alginate disks. J. Biomed. Mater. Res. A 83A, 1128–1137 (2007).

    Article  CAS  Google Scholar 

  270. 270.

    Gu, Q., Tomaskovic-Crook, E., Wallace, G. G. & Crook, J. M. 3D bioprinting human induced pluripotent stem cell constructs for in situ cell proliferation and successive multilineage differentiation. Adv. Healthc. Mater. 6, 1700175 (2017).

    Article  CAS  Google Scholar 

  271. 271.

    Sharma, R., Smits, I. P. M., De La Vega, L., Lee, C. & Willerth, S. M. 3D bioprinting pluripotent stem cell derived neural tissues using a novel fibrin bioink containing drug releasing microspheres. Front. Bioeng. Biotechnol. https://doi.org/10.3389/fbioe.2020.00057 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  272. 272.

    Marin-Padilla, M. Early vascularization of the embryonic cerebral cortex: Golgi and electron microscopic studies. J. Comp. Neurol. 241, 237–249 (1985).

    PubMed  Article  CAS  Google Scholar 

  273. 273.

    Tata, M., Ruhrberg, C. & Fantin, A. Vascularisation of the central nervous system. Mech. Dev. 138, 26–36 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  274. 274.

    Bjornsson, C. S., Apostolopoulou, M., Tian, Y. & Temple, S. It takes a village: constructing the neurogenic niche. Dev. Cell 32, 435–446 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  275. 275.

    Quiñones-Hinojosa, A. et al. Cellular composition and cytoarchitecture of the adult human subventricular zone: a niche of neural stem cells. J. Comp. Neurol. 494, 415–434 (2006).

    PubMed  Article  Google Scholar 

  276. 276.

    Leventhal, C., Rafii, S., Rafii, D., Shahar, A. & Goldman, S. A. Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Mol. Cell. Neurosci. 13, 450–464 (1999).

    PubMed  Article  CAS  Google Scholar 

  277. 277.

    Bayas, A. et al. Human cerebral endothelial cells are a potential source for bioactive BDNF. Cytokine 19, 55–58 (2002).

    PubMed  Article  CAS  Google Scholar 

  278. 278.

    Palmer, T. D., Willhoite, A. R. & Gage, F. H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol. 425, 479–494 (2000).

    PubMed  Article  CAS  Google Scholar 

  279. 279.

    Schänzer, A. et al. Direct stimulation of adult neural stem cells in vitro and neurogenesis in vivo by vascular endothelial growth factor. Brain Pathol. 14, 237–248 (2004).

    PubMed  Article  Google Scholar 

  280. 280.

    Mosher, K. I. et al. Neural progenitor cells regulate microglia functions and activity. Nat. Neurosci. 15, 1485 (2012).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  281. 281.

    Ottone, C. et al. Direct cell–cell contact with the vascular niche maintains quiescent neural stem cells. Nat. Cell Biol. 16, 1045 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  282. 282.

    Novosel, E. C., Kleinhans, C. & Kluger, P. J. Vascularization is the key challenge in tissue engineering. Adv. Drug Deliv. Rev. 63, 300–311 (2011).

    PubMed  Article  CAS  Google Scholar 

  283. 283.

    Santos, M. I. & Reis, R. L. Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 10, 12–27 (2010).

    PubMed  Article  CAS  Google Scholar 

  284. 284.

    Shen, Q. et al. Endothelial cells stimulate self-renewal and expand neurogenesis of neural stem cells. Science 304, 1338–1340 (2004).

    PubMed  Article  CAS  Google Scholar 

  285. 285.

    Kuhnert, F. et al. Essential regulation of CNS angiogenesis by the orphan G protein–coupled receptor GPR124. Science 330, 985–989 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  286. 286.

    Boutin, M. E. et al. A three-dimensional neural spheroid model for capillary-like network formation. J. Neurosci. Methods 299, 55–63 (2018).

    PubMed  Article  Google Scholar 

  287. 287.

    Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  288. 288.

    Qian, X. et al. Sliced human cortical organoids for modeling distinct cortical layer formation. Cell Stem Cell 26, 766–781.e769 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  289. 289.

    Osaki, T., Sivathanu, V. & Kamm, R. D. Engineered 3D vascular and neuronal networks in a microfluidic platform. Sci. Rep. 8, 5168 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  290. 290.

    Ronaldson-Bouchard, K. & Vunjak-Novakovic, G. Organs-on-a-chip: a fast track for engineered human tissues in drug development. Cell Stem Cell 22, 310–324 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  291. 291.

    Cederquist, G. Y. et al. Specification of positional identity in forebrain organoids. Nat. Biotechnol. 37, 436–444 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  292. 292.

    Uzel, S. G. M. et al. Simultaneous or sequential orthogonal gradient formation in a 3D cell culture microfluidic platform. Small 12, 612–622 (2016).

    PubMed  Article  CAS  Google Scholar 

  293. 293.

    DeForest, C. A. & Tirrell, D. A. A photoreversible protein-patterning approach for guiding stem cell fate in three-dimensional gels. Nat. Mater. 14, 523–531 (2015).

    PubMed  Article  CAS  Google Scholar 

  294. 294.

    Badeau, B. A., Comerford, M. P., Arakawa, C. K., Shadish, J. A. & DeForest, C. A. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10, 251 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  295. 295.

    Shadish, J. A., Benuska, G. M. & DeForest, C. A. Bioactive site-specifically modified proteins for 4D patterning of gel biomaterials. Nat. Mater. 18, 1005–1014 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  296. 296.

    Stejskalová, A., Oliva, N., England, F. J. & Almquist, B. D. Biologically inspired, cell-selective release of aptamer-trapped growth factors by traction forces. Adv. Mater. 31, 1806380 (2019).

    Article  CAS  Google Scholar 

  297. 297.

    Homan, K. A. et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro. Nat. Methods 16, 255–262 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  298. 298.

    Song, K. H., Highley, C. B., Rouff, A. & Burdick, J. A. Complex 3D-printed microchannels within cell-degradable hydrogels. Adv. Funct. Mater. 28, 1801331 (2018).

    Article  CAS  Google Scholar 

  299. 299.

    Li, S. et al. Hydrogels with precisely controlled integrin activation dictate vascular patterning and permeability. Nat. Mater. 16, 953–961 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  300. 300.

    Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  301. 301.

    Pai, V. P. et al. Endogenous gradients of resting potential instructively pattern embryonic neural tissue via notch signaling and regulation of proliferation. J. Neurosci. 35, 4366 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  302. 302.

    Vitali, I. et al. Progenitor hyperpolarization regulates the sequential generation of neuronal subtypes in the developing neocortex. Cell 174, 1264–1276.e1215 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  303. 303.

    Herrera-Rincon, C., Pai, V. P., Moran, K. M., Lemire, J. M. & Levin, M. The brain is required for normal muscle and nerve patterning during early Xenopus development. Nat. Commun. 8, 587 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  304. 304.

    Voge, C. M. & Stegemann, J. P. Carbon nanotubes in neural interfacing applications. J. Neural Eng. 8, 011001 (2011).

    PubMed  Article  Google Scholar 

  305. 305.

    Vashist, A. et al. Advances in carbon nanotubes–hydrogel hybrids in nanomedicine for therapeutics. Adv. Healthc. Mater. 7, 1701213 (2018).

    Article  CAS  Google Scholar 

  306. 306.

    Hu, L., Hecht, D. S. & Grüner, G. Carbon nanotube thin films: fabrication, properties, and applications. Chem. Rev. 110, 5790–5844 (2010).

    PubMed  Article  CAS  Google Scholar 

  307. 307.

    Park, S., Vosguerichian, M. & Bao, Z. A review of fabrication and applications of carbon nanotube film-based flexible electronics. Nanoscale 5, 1727–1752 (2013).

    PubMed  Article  CAS  Google Scholar 

  308. 308.

    Mattson, M. P., Haddon, R. C. & Rao, A. M. Molecular functionalization of carbon nanotubes and use as substrates for neuronal growth. J. Mol. Neurosci. 14, 175–182 (2000).

    PubMed  Article  CAS  Google Scholar 

  309. 309.

    Hu, H., Ni, Y., Montana, V., Haddon, R. C. & Parpura, V. Chemically functionalized carbon nanotubes as substrates for neuronal growth. Nano Lett. 4, 507–511 (2004).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  310. 310.

    Cellot, G. et al. Carbon nanotubes might improve neuronal performance by favouring electrical shortcuts. Nat. Nanotechnol. 4, 126–133 (2009).

    PubMed  Article  CAS  Google Scholar 

  311. 311.

    Landers, J. et al. Carbon nanotube composites as multifunctional substrates for in situ actuation of differentiation of human neural stem cells. Adv. Healthc. Mater. 3, 1745–1752 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  312. 312.

    Shao, H. et al. Carbon nanotube multilayered nanocomposites as multifunctional substrates for actuating neuronal differentiation and functions of neural stem cells. Biomaterials 175, 93–109 (2018).

    PubMed  Article  CAS  Google Scholar 

  313. 313.

    Hansen, S. F. & Lennquist, A. Carbon nanotubes added to the SIN List as a nanomaterial of very high concern. Nat. Nanotechnol. 15, 3–4 (2020).

    PubMed  Article  CAS  Google Scholar 

  314. 314.

    Heller, D. A. et al. Banning carbon nanotubes would be scientifically unjustified and damaging to innovation. Nat. Nanotechnol. 15, 164–166 (2020).

    PubMed  Article  CAS  Google Scholar 

  315. 315.

    Fadeel, B. & Kostarelos, K. Grouping all carbon nanotubes into a single substance category is scientifically unjustified. Nat. Nanotechnol. 15, 164–164 (2020).

    PubMed  Article  CAS  Google Scholar 

  316. 316.

    Shin, S. R. et al. Graphene-based materials for tissue engineering. Adv. Drug Deliv. Rev. 105, 255–274 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  317. 317.

    Lalwani, G., D’Agati, M., Khan, A. M. & Sitharaman, B. Toxicology of graphene-based nanomaterials. Adv. Drug Deliv. Rev. 105, 109–144 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  318. 318.

    Akhavan, O., Ghaderi, E., Shirazian, S. A. & Rahighi, R. Rolled graphene oxide foams as three-dimensional scaffolds for growth of neural fibers using electrical stimulation of stem cells. Carbon 97, 71–77 (2016).

    Article  CAS  Google Scholar 

  319. 319.

    Tang, M. et al. Enhancement of electrical signaling in neural networks on graphene films. Biomaterials 34, 6402–6411 (2013).

    PubMed  Article  CAS  Google Scholar 

  320. 320.

    Guo, B. & Ma, P. X. Conducting polymers for tissue engineering. Biomacromolecules 19, 1764–1782 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  321. 321.

    Farokhi, M. et al. Conductive biomaterials as substrates for neural stem cells differentiation towards neuronal lineage cells. Macromol. Biosci. 21, 2000123 (2021).

    Article  CAS  Google Scholar 

  322. 322.

    Pires, F., Ferreira, Q., Rodrigues, C. A., Morgado, J. & Ferreira, F. C. Neural stem cell differentiation by electrical stimulation using a cross-linked PEDOT substrate: expanding the use of biocompatible conjugated conductive polymers for neural tissue engineering. Biochim. Biophys. Acta 1850, 1158–1168 (2015).

    PubMed  Article  CAS  Google Scholar 

  323. 323.

    Stewart, E. et al. Electrical stimulation using conductive polymer polypyrrole promotes differentiation of human neural stem cells: a biocompatible platform for translational neural tissue engineering. Tissue Eng. C. Methods 21, 385–393 (2015).

    Article  CAS  Google Scholar 

  324. 324.

    Liu, J. et al. Genetically targeted chemical assembly of functional materials in living cells, tissues, and animals. Science 367, 1372 (2020). The authors induce the polymerization of a CP on neural cell surfaces via genetic modification.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  325. 325.

    Song, S. et al. Controlling properties of human neural progenitor cells using 2D and 3D conductive polymer scaffolds. Sci. Rep. 9, 19565 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  326. 326.

    Wang, S. et al. Neural stem cell proliferation and differentiation in the conductive PEDOT-HA/Cs/Gel scaffold for neural tissue engineering. Biomater. Sci. 5, 2024–2034 (2017).

    PubMed  Article  CAS  Google Scholar 

  327. 327.

    Wang, S. et al. 3D culture of neural stem cells within conductive PEDOT layer-assembled chitosan/gelatin scaffolds for neural tissue engineering. Mater. Sci. Eng. C. Mater Biol. Appl. 93, 890–901 (2018).

    PubMed  Article  CAS  Google Scholar 

  328. 328.

    Feig, V. R. et al. Conducting polymer-based granular hydrogels for injectable 3D cell scaffolds. Adv. Mater. Technol. https://doi.org/10.1002/admt.202100162 (2021).

    Article  PubMed  Google Scholar 

  329. 329.

    Noshadi, I. et al. Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties. Sci. Rep. 7, 4345 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  330. 330.

    Feig, V. R., Tran, H., Lee, M. & Bao, Z. Mechanically tunable conductive interpenetrating network hydrogels that mimic the elastic moduli of biological tissue. Nat. Commun. 9, 2740 (2018). The authors create mechanically tunable interpenetrating hydrogel networks with high conductivity.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  331. 331.

    Trujillo, C. A. et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, P558-569.E7 (2019).

    Article  CAS  Google Scholar 

  332. 332.

    Fattahi, P., Yang, G., Kim, G. & Abidian, M. R. A review of organic and inorganic biomaterials for neural interfaces. Adv. Mater. 26, 1846–1885 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  333. 333.

    Rivnay, J., Wang, H., Fenno, L., Deisseroth, K. & Malliaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  334. 334.

    Song, E., Li, J., Won, S. M., Bai, W. & Rogers, J. A. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

    PubMed  Article  CAS  Google Scholar 

  335. 335.

    Stiles, J. & Jernigan, T. L. The basics of brain development. Neuropsychol. Rev. 20, 327–348 (2010).

    PubMed  PubMed Central  Article  Google Scholar 

  336. 336.

    Lui, Jan H., Hansen, David, V. & Kriegstein, Arnold, R. Development and evolution of the human neocortex. Cell 146, 18–36 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  337. 337.

    Hébert, J. M. & Fishell, G. The genetics of early telencephalon patterning: some assembly required. Nat. Rev. Neurosci. 9, 678–685 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  338. 338.

    Kolodkin, A. L. & Tessier-Lavigne, M. Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb. Perspect Biol. https://doi.org/10.1101/cshperspect.a001727 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  339. 339.

    Chung, K. et al. Structural and molecular interrogation of intact biological systems. Nature 497, 332–337 (2013).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  340. 340.

    Yang, B. et al. Single-cell phenotyping within transparent intact tissue through whole-body clearing. Cell 158, 945–958 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  341. 341.

    Treweek, J. B. et al. Whole-body tissue stabilization and selective extractions via tissue-hydrogel hybrids for high-resolution intact circuit mapping and phenotyping. Nat. Protoc. 10, 1860–1896 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  342. 342.

    Lee, E. et al. ACT-PRESTO: rapid and consistent tissue clearing and labeling method for 3-dimensional (3D) imaging. Sci. Rep. 6, 18631 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  343. 343.

    Ku, T. et al. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34, 973–981 (2016).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  344. 344.

    Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  345. 345.

    Murray, E. et al. Simple, scalable proteomic imaging for high-dimensional profiling of intact systems. Cell 163, 1500–1514 (2015).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  346. 346.

    Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  347. 347.

    Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  348. 348.

    Farahany, N. A. et al. The ethics of experimenting with human brain tissue. Nature 556, 429–432 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  349. 349.

    Greely, H. T. Human brain surrogates research: the onrushing ethical dilemma. Am. J. Bioeth. 21, 34–45 (2018).

    Article  Google Scholar 

  350. 350.

    Xiao, D. et al. Generation of self-organized sensory ganglion organoids and retinal ganglion cells from fibroblasts. Sci. Adv. 6, eaaz5858 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  351. 351.

    Ohayon E. L. & Lam, T. P. W. in Society for Neuroscience 2019 Annual Meeting https://www.abstractsonline.com/pp8/#!/7883/presentation/58037 (Society for Neuroscience, 2019).

  352. 352.

    National Academies of Sciences, Engineering, and Medicine. The Emerging Field of Human Neural Organoids, Transplants, and Chimeras: Science, Ethics and Governance (The National Academies Press, 2021).

Download references

Acknowledgements

The authors thank members of the Heilshorn, Paşca, Bao and Cui laboratories for helpful discussions. Specifically, the authors acknowledge B. L. LeSavage and M. J. Kratochvil for their constructive feedback. The authors acknowledge financial support from the US National Institutes of Health (R21NS114549, R01EB027666 and R01EB027171 (S.C.H.)), the US National Science Foundation (DMR1808415 and CBET2033302 (S.C.H.)), the National Science Foundation Future Manufacturing Program under award no. 2037164 (V.R.F., Y.J. and Z.B.), the National Science Foundation Graduate Research Fellowship Program under grant no. DGE-1656518 (J.G.R. and M.S.H.), the Stanford Smith Family Graduate Fellowship (J.G.R.), the Stanford ChEM-H O’Leary-Thiry Graduate Fellowship (M.S.H.), a Stanford Bio-X seed grant (V.R.F., Y.J. and Z.B.) and the Stanford Brain Organogenesis Program in the Wu Tsai Neurosciences Institute (B.C., H.T.G., Z.B., S.P.P. and S.C.H.).

Author information

Affiliations

Authors

Contributions

J.G.R., M.S.H, T.L.L., V.R.F. and Y.J. researched data for the article. J.G.R, Z.B., S.P.P. and S.C.H. contributed substantially to discussion of the content. J.G.R., M.S.H., T.L.L., V.R.F., Y.J. and H.T.G. wrote the article. J.G.R., M.S.H., T.L.L., B.C., H.T.G., Z.B., S.P.P. and S.C.H. reviewed and/or edited the manuscript before submission.

Corresponding author

Correspondence to Sarah C. Heilshorn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Neuroscience thanks I.-H. Park, who co-reviewed with B. Cakir, T. Segura, who co-reviewed with J. Samal, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Human pluripotent stem cells

(Human PS cells). A broad category of human stem cells that includes both embryonic stem cells and induced pluripotent stem cells. Stem cells are defined by their capacity to continuously divide into identical, undifferentiated daughter cells and to differentiate into cells from any of the three germ layers.

Organoids

Three-dimensional clusters of organ-specific cells of multiple subtypes that self-organize and exhibit some organ-appropriate functions.

Assembloids

Three-dimensional, self-organizing cultures derived by fusion of organoids with other organoids or cell lineages.

Neural progenitor cell

(NPC). A neural stem cell with limited capacity for self-renewal.

Natural biomaterials

Biomaterials derived from natural sources, including proteins, polysaccharides and decellularized tissue matrices.

Neural stem cells

(NSCs). Multipotent cells that maintain the capacity to undergo limitless self-renewing cell divisions and create progeny of restricted lineages that differentiate into mature neural and glial cells.

Synthetic biomaterials

Biomaterials derived from synthetic sources, including metals, ceramics, synthetic polymers and composites.

Decellularization

The process of isolating tissue-specific extracellular matrix by removing cell content.

Protein engineering

The process of modifying existing protein sequences through substitution, insertion or deletion of nucleotides in an encoding gene.

Neuroepithelial cells

(NECs). Early neural stem cells emerging from neuroectoderm that ultimately give rise to radial glia and other cells in the early developing central nervous system.

Organ-on-a-chip

(OoC). A class of microphysiological systems wherein specialized cells are cultured within microfluidic chips.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roth, J.G., Huang, M.S., Li, T.L. et al. Advancing models of neural development with biomaterials. Nat Rev Neurosci 22, 593–615 (2021). https://doi.org/10.1038/s41583-021-00496-y

Download citation

Search

Quick links