Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Types and functions of heterogeneity in mycobacteria

Abstract

The remarkable ability of Mycobacterium tuberculosis to survive attacks from the host immune response and drug treatment is due to the resilience of a few bacilli rather than a result of survival of the entire population. Maintenance of mycobacterial subpopulations with distinct phenotypic characteristics is key for survival in the face of dynamic and variable stressors encountered during infection. Mycobacterial populations develop a wide range of phenotypes through an innate asymmetric growth pattern and adaptation to fluctuating microenvironments during infection that point to heterogeneity being a vital survival strategy. In this Review, we describe different types of mycobacterial heterogeneity and discuss how heterogeneity is generated and regulated in response to environmental cues. We discuss how this heterogeneity may have a key role in recording memory of their environment at both the single-cell level and the population level to give mycobacterial populations plasticity to withstand complex stressors.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Mycobacterial asymmetry.
Fig. 2: Environmental heterogeneity.
Fig. 3: Population structure and complex Mycobacterium tuberculosis phenotypes.

References

  1. WHO. Global Tuberculosis Report. vol. 148 (2020).

  2. Xie, Y. L. et al. Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Sci. Transl. Med. 13, eabd7618 (2021).

    CAS  PubMed  Google Scholar 

  3. Aldridge, B. B. et al. Asymmetry and aging of mycobacterial cells lead to variable growth and antibiotic susceptibility. Science 529, 100–104 (2012). This study shows asymmetric mycobacterial growth and division and finds that sister cells show differential drug susceptibility.

    Google Scholar 

  4. Joyce, G. et al. Cell division site placement and asymmetric growth in mycobacteria. PLoS ONE 7, e44582 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Singh, B. et al. Asymmetric growth and division in Mycobacterium spp.: compensatory mechanisms for non-medial septa. Mol. Microbiol. 88, 64–76 (2013). This study reports that Mycobacterium marinum and M. smegmatis cells often form division sites at off-centre, which may be compensated by postseptal DNA transport and unequal polar growth.

    CAS  Article  PubMed  Google Scholar 

  6. Eskandarian, H. A. et al. Division site selection linked to inherited cell surface wave troughs in mycobacteria. Nat. Microbiol. 2, 17094 (2017). This study shows that mycobacteria present a morphological landmark on the surface of the cells that corresponds to future sites of division.

    CAS  PubMed  Google Scholar 

  7. Logsdon, M. M. et al. A parallel adder coordinates mycobacterial cell-cycle progression and cell-size homeostasis in the context of asymmetric growth and organization. Curr. Biol. 27, 3367–3374.e7 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Hesper Rego, E., Audette, R. E. & Rubin, E. J. Deletion of a mycobacterial divisome factor collapses single-cell phenotypic heterogeneity. Nature 546, 153–157 (2017). This study reports that LamA is a member of the mycobacterial division complex by showing that deletion of lamA decreases asymmetric polar growth in mycobacteria.

    PubMed  PubMed Central  Google Scholar 

  9. Hannebelle, M. T. M. et al. A biphasic growth model for cell pole elongation in mycobacteria. Nat. Commun. 11, 452 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Saito, K. et al. Rifamycin action on RNA polymerase in antibiotic tolerant Mycobacterium tuberculosis results in differentially detectable populations. Proc. Natl Acad. Sci. USA 114, E4832–E4840 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Vijay, S. et al. Influence of stress and antibiotic resistance on cell-length distribution in Mycobacterium tuberculosis clinical isolates. Front. Microbiol. 21, 2296 (2017). This study shows that increased cell size and variation in cell length are found in sputum and infected macrophages compared with liquid culture. It also shows that increased cell length is associated with pulmonary TB severity.

    Google Scholar 

  12. Hicks, N. D. et al. Clinically prevalent mutations in Mycobacterium tuberculosis alter propionate metabolism and mediate multidrug tolerance. Nat. Microbiol. 3, 1032–1042 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hicks, N. D., Carey, A. F., Yang, J., Zhao, Y. & Fortunea, S. M. Bacterial genome-wide association identifies novel factors that contribute to ethionamide and prothionamide susceptibility in Mycobacterium tuberculosis. mBio 10, e00616 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Advani, J. et al. Whole genome sequencing of Mycobacterium tuberculosis clinical isolates from India reveals genetic heterogeneity and region-specific variations that might affect drug susceptibility. Front. Microbiol. 10, 309 (2019).

    PubMed  PubMed Central  Google Scholar 

  15. Ginhoux, F., Schultze, J. L., Murray, P. J., Ochando, J. & Biswas, S. K. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17, 34–40 (2016).

    CAS  PubMed  Google Scholar 

  16. Mouton, J. M., Helaine, S., Holden, D. W. & Sampson, S. L. Elucidating population-wide mycobacterial replication dynamics at the single-cell level. Microbiology 162, 966–978 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bryson, B. D. et al. Heterogeneous GM-CSF signaling in macrophages is associated with control of Mycobacterium tuberculosis. Nat. Commun. 10, 2329 (2019).

    PubMed  PubMed Central  Google Scholar 

  18. Cheng, Y. et al. Rapid and specific labeling of single live Mycobacterium tuberculosis with a dual-targeting fluorogenic probe. Sci. Transl. Med. 10, 1–13 (2018).

    Google Scholar 

  19. Potvin-Trottier, L., Luro, S. & Paulsson, J. Microfluidics and single-cell microscopy to study stochastic processes in bacteria. Curr. Opin. Microbiol. 43, 186–192 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Prideaux, B. et al. The association between sterilizing activity and drug distribution into tuberculosis lesions. Nat. Med. 21, 1223–1227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Zimmerman, M. et al. Ethambutol partitioning in tuberculous pulmonary lesions explains its clinical efficacy. Antimicrob. Agents Chemother. 61, e00924-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  22. McCaffrey, E. F. et al. The immunoregulatory landscape of human tuberculosis granulomas. Nat. Immunol. 23, 318–329 (2022).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yu, W. Y. et al. Updates on 18F-FDG-PET/CT as a clinical tool for tuberculosis evaluation and therapeutic monitoring. Quant. Imaging Med. Surg. 9, 1132–1146 (2019).

    PubMed  PubMed Central  Google Scholar 

  24. Stylianidou, S., Brennan, C., Nissen, S. B., Kuwada, N. J. & Wiggins, P. A. SuperSegger: robust image segmentation, analysis and lineage tracking of bacterial cells. Mol. Microbiol. 102, 690–700 (2016).

    CAS  PubMed  Google Scholar 

  25. Vicar, T. et al. Cell segmentation methods for label-free contrast microscopy: review and comprehensive comparison. BMC Bioinformatics 20, 1 (2019).

    Google Scholar 

  26. Zhu, J. et al. Spatiotemporal localization of proteins in mycobacteria. Cell Rep. 37, 110154 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Larkins-Ford, J. et al. Systematic measurement of combination-drug landscapes to predict in vivo treatment outcomes for tuberculosis. Cell Syst. 12, 1046–1063.e7 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lee, J. J. et al. Transient drug-tolerance and permanent drug-resistance rely on the trehalose-catalytic shift in Mycobacterium tuberculosis. Nat. Commun. 10, 2928 (2019).

    PubMed  PubMed Central  Google Scholar 

  29. McKinney, J. D. et al. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406, 735 (2000).

    CAS  PubMed  Google Scholar 

  30. Daniel, J., Maamar, H., Deb, C., Sirakova, T. D. & Kolattukudy, P. E. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog. 7, e1002093 (2011). This study shows that M. tuberculosis develops phenotypic tolerance to isoniazid in hypoxic and lipid-loaded macrophages. It also suggests that M. tuberculosis utilizes host triacylglycerol for its lipid metabolism.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Santucci, P. et al. Nitrogen deprivation induces triacylglycerol accumulation, drug tolerance and hypervirulence in mycobacteria. Sci. Rep. 9, 8667 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Baker, J. J., Johnson, B. K. & Abramovitch, R. B. Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol. Microbiol. 94, 56–69 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Feng, L., Chen, S. & Hu, Y. PhoPR positively regulates whiB3 expression in response to low pH in pathogenic mycobacteria. J. Bacteriol. 200, e00766-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  34. Shastri, M. D. et al. Role of oxidative stress in the pathology and management of human tuberculosis. Oxid. Med. Cell. Longev. 2018, 7695364 (2018).

    PubMed  PubMed Central  Google Scholar 

  35. Voskuil, M. I., Bartek, I. L., Visconti, K. & Schoolnik, G. K. The response of Mycobacterium tuberculosis to reactive oxygen and nitrogen species. Front. Microbiol. 2, 105 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Kang, C. M., Nyayapathy, S., Lee, J. Y., Suh, J. W. & Husson, R. N. Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology 154, 725–735 (2008). This study shows that Wag31, a homologue of the cell division protein DivIVA, is localized at the cell pole, regulating cell wall synthesis and cell shape.

    CAS  PubMed  Google Scholar 

  37. Meniche, X. et al. Subpolar addition of new cell wall is directed by DivIVA in mycobacteria. Proc. Natl Acad. Sci. USA 111, E3243–E3251 (2014). This study shows that the tropomyosin-like protein, DivIVA, is located at the tip of the growing cell pole, interacting with enzymes that are involved in the cell wall precursor synthesis.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kieser, K. J. et al. Phosphorylation of the peptidoglycan synthase PonA1 governs the rate of polar elongation in mycobacteria. PLoS Pathog. 11, e1005010 (2015).

    PubMed  PubMed Central  Google Scholar 

  39. Jani, C. et al. Regulation of polar peptidoglycan biosynthesis by Wag31 phosphorylation in mycobacteria. BMC Microbiol. 10, 327 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Botella, H. et al. Distinct spatiotemporal dynamics of peptidoglycan synthesis between Mycobacterium smegmatis and Mycobacterium tuberculosis. mBio 8, e01183-17 (2017).

    PubMed  PubMed Central  Google Scholar 

  41. Richardson, K. et al. Temporal and intrinsic factors of rifampicin tolerance in mycobacteria. Proc. Natl Acad. Sci. USA 113, 8302–8307 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Elowitz, M. B., Levine, A. J., Siggia, E. D. & Swain, P. S. Stochastic gene expression in a single cell. Science 297, 1183–1186 (2002).

    CAS  PubMed  Google Scholar 

  43. Huh, D. & Paulsson, J. Random partitioning of molecules at cell division. Proc. Natl Acad. Sci. USA 108, 15004–15009 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohler, K. & Ibba, M. Translational fidelity and mistranslation in the cellular response to stress. Nat. Microbiol. 2, 17117 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Hansen, M. M. K., Desai, R. V., Simpson, M. L. & Weinberger, L. S. Cytoplasmic amplification of transcriptional noise generates substantial cell-to-cell variability. Cell Syst. 7, 384–397.e6 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Kieser, K. J. & Rubin, E. J. How sisters grow apart: mycobacterial growth and division. Nat. Rev. Microbiol. 12, 550–562 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Logsdon, M. M. & Aldridge, B. B. Stable regulation of cell cycle events in mycobacteria: insights from inherently heterogeneous bacterial populations. Front. Microbiol. 9, 514 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Torrelles, J. B. et al. Characterization of virulence, colony morphotype and the glycopeptidolipid of Mycobacterium avium strain 104. Tuberculosis 82, 293–300 (2002).

    CAS  PubMed  Google Scholar 

  49. Giovannini, D. et al. A new Mycobacterium tuberculosis smooth colony reduces growth inside human macrophages and represses PDIM operon gene expression. Does an heterogeneous population exist in intracellular mycobacteria? Microb. Pathog. 53, 135–146 (2012).

    CAS  PubMed  Google Scholar 

  50. Supply, P., Marceau, M., Mangenot, S. & Roche, D. Genome analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of the etiologic agent of tuberculosis. Nat. Genet. 45, 172–179 (2013).

    CAS  PubMed  Google Scholar 

  51. Pawlik, A. et al. Identification and characterization of the genetic changes responsible for the characteristic smooth-to-rough morphotype alterations of clinically persistent Mycobacterium abscessus. Mol. Microbiol. 90, 612–629 (2013).

    CAS  PubMed  Google Scholar 

  52. Bellerose, M. M. et al. Common variants in the glycerol kinase gene reduce tuberculosis drug efficacy. mBio 10, e00663-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  53. Safi, H. et al. Phase variation in Mycobacterium tuberculosis glpK produces transiently heritable drug tolerance. Proc. Natl Acad. Sci. USA 116, 19665–19674 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Heunis, T. et al. Proteogenomic investigation of strain variation in clinical Mycobacterium tuberculosis isolates. J. Proteome Res. 16, 3841–3851 (2017).

    CAS  PubMed  Google Scholar 

  55. Wakamoto, Y. et al. Dynamic persistence of antibiotic-stressed mycobacteria. Science 339, 91–95 (2013). This study shows that stochastic processes contribute to population heterogeneity in mycobacteria and cause drug persistence.

    CAS  PubMed  Google Scholar 

  56. Zhu, J. H. et al. Rifampicin can induce antibiotic tolerance in mycobacteria via paradoxical changes in rpoB transcription. Nat. Commun. 9, 4218 (2018).

    PubMed  PubMed Central  Google Scholar 

  57. Javid, B. et al. Mycobacterial mistranslation is necessary and sufficient for rifampicin phenotypic resistance. Proc. Natl Acad. Sci. USA 111, 1132–1137 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Pym, A. S., Saint-Joanis, B. & Cole, S. T. Effect of katG mutations on the virulence of Mycobacterium tuberculosis and the implication for transmission in humans. Infect. Immun. 70, 4955–4960 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Wengenack, N. L., Todorovic, S., Yu, L. & Rusnak, F. Evidence for differential binding of isoniazid by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG(S315T). Biochemistry 37, 15825–15834 (1998).

    CAS  PubMed  Google Scholar 

  60. Gagneux, S. et al. Impact of bacterial genetics on the transmission of isoniazid-resistant Mycobacterium tuberculosis. PLoS Pathog. 2, e61 (2006).

    PubMed  PubMed Central  Google Scholar 

  61. Xie, L. et al. First succinyl-proteome profiling of extensively drug-resistant Mycobacterium tuberculosis revealed involvement of succinylation in cellular physiology. J. Proteome Res. 14, 107–119 (2015).

    CAS  PubMed  Google Scholar 

  62. Gupta, M. et al. HupB, a nucleoid-associated protein of Mycobacterium tuberculosis, is modified by serine/threonine protein kinases in vivo. J. Bacteriol. 196, 2646–2657 (2014).

    PubMed  PubMed Central  Google Scholar 

  63. Ghosh, S., Padmanabhan, B., Anand, C. & Nagaraja, V. Lysine acetylation of the Mycobacterium tuberculosis HU protein modulates its DNA binding and genome organization. Mol. Microbiol. 100, 577–588 (2016).

    CAS  PubMed  Google Scholar 

  64. Sakatos, A. et al. Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria. Sci. Adv. 4, eaao1478 (2018).

    PubMed  PubMed Central  Google Scholar 

  65. Gorla, P. et al. MtrA response regulator controls cell division and cell wall metabolism and affects susceptibility of mycobacteria to the first line antituberculosis drugs. Front. Microbiol. 9, 2839 (2018).

    PubMed  PubMed Central  Google Scholar 

  66. Jakkala, K. & Ajitkumar, P. Hypoxic non-replicating persistent Mycobacterium tuberculosis develops thickened outer layer that helps in restricting rifampicin entry. Front. Microbiol. 10, 2339 (2019).

    PubMed  PubMed Central  Google Scholar 

  67. Lenaerts, A., Barry, C. E. & Dartois, V. Heterogeneity in tuberculosis pathology, microenvironments and therapeutic responses. Immunol. Rev. 264, 288–307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Qualls, J. E. & Murray, P. J. Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Semin. Immunopathol. 38, 139–152 (2016).

    CAS  PubMed  Google Scholar 

  69. Cadena, A. M., Fortune, S. M. & Flynn, J. L. Heterogeneity in tuberculosis. Nat. Rev. Immunol. 17, 691–702 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Barry, C. E. et al. The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat. Rev. Microbiol. 7, 845–855 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Santucci, P. et al. Intracellular localisation of Mycobacterium tuberculosis affects efficacy of the antibiotic pyrazinamide. Nat. Commun. 12, 3816 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014).

    CAS  PubMed  Google Scholar 

  73. Manina, G., Dhar, N. & McKinney, J. D. Stress and host immunity amplify Mycobacterium tuberculosis phenotypic heterogeneity and induce nongrowing metabolically active forms. Cell Host Microbe 17, 32–46 (2015).

    CAS  PubMed  Google Scholar 

  74. Subbian, S. et al. Lesion-specific immune response in granulomas of patients with pulmonary tuberculosis: a pilot study. PLoS ONE 10, e0132249 (2015).

    PubMed  PubMed Central  Google Scholar 

  75. Marakalala, M. J. et al. Inflammatory signaling in human tuberculosis granulomas is spatially organized. Nat. Med. 22, 531–538 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Sarathy, J. P. et al. Extreme drug tolerance of Mycobacterium tuberculosis in caseum. Antimicrob. Agents Chemother. 62, e02266-17 (2018).

    PubMed  PubMed Central  Google Scholar 

  77. Strydom, N. et al. Tuberculosis drugs’ distribution and emergence of resistance in patient’s lung lesions: a mechanistic model and tool for regimen and dose optimization. PLoS Med. 16, e1002773 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tsai, M. C. et al. Characterization of the tuberculous granuloma in murine and human lungs: cellular composition and relative tissue oxygen tension. Cell. Microbiol. 8, 218–232 (2006).

    CAS  PubMed  Google Scholar 

  79. Ryan, G. J. et al. Multiple M. tuberculosis phenotypes in mouse and guinea pig lung tissue revealed by a dual-staining approach. PLoS ONE 5, e11108 (2010).

    PubMed  PubMed Central  Google Scholar 

  80. Driver, E. R. et al. Evaluation of a mouse model of necrotic granuloma formation using C3HeB/FeJ mice for testing of drugs against Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 56, 3181–3195 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Blanc, L. et al. High-resolution mapping of fluoroquinolones in TB rabbit lesions reveals specific distribution in immune cell types. eLife 7, e41115 (2018).

    PubMed  PubMed Central  Google Scholar 

  82. Rifat, D. et al. Pharmacokinetics of rifapentine and rifampin in a rabbit model of tuberculosis and correlation with clinical trial data. Sci. Transl. Med. 10, eaai7786 (2018).

    PubMed  PubMed Central  Google Scholar 

  83. Smith, C. M. et al. Functionally overlapping variants control TB susceptibility in Collaborative Cross mice. mBio 10, e2791-19 (2019).

    Google Scholar 

  84. Gold, B. & Nathan, C. Targeting phenotypically tolerant Mycobacterium tuberculosis. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.tbtb2-0031-2016 (2017).

    Article  PubMed  Google Scholar 

  85. Guerrini, V. et al. Storage lipid studies in tuberculosis reveal that foam cell biogenesis is disease-specific. PLoS Pathog. 14, e1007223 (2018).

    PubMed  PubMed Central  Google Scholar 

  86. Kim, M. J. et al. Caseation of human tuberculosis granulomas correlates with elevated host lipid metabolism. EMBO Mol. Med. 2, 258–274 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Pandey, A. K. & Sassetti, C. M. Mycobacterial persistence requires the utilization of host cholesterol. Proc. Natl Acad. Sci. USA 105, 4376–4380 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. Smith, T. C. II et al. Morphological profiling of tubercle bacilli identifies drug pathways of action. Proc. Natl Acad. Sci. USA 117, 18744–18753 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Borah, K. et al. Metabolic fluxes for nutritional flexibility of Mycobacterium tuberculosis. Mol. Syst. Biol. 17, e10280 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Gould, T. A., Van De Langemheen, H., Muñoz-Elías, E. J., McKinney, J. D. & Sacchettini, J. C. Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis. Mol. Microbiol. 61, 940–947 (2006).

    CAS  PubMed  Google Scholar 

  91. Eoh, H. & Rhee, K. Y. Methylcitrate cycle defines the bactericidal essentiality of isocitrate lyase for survival of Mycobacterium tuberculosis on fatty acids. Proc. Natl Acad. Sci. USA 111, 4976–4981 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Mali, P. C. & Meena, L. S. Triacylglycerol: nourishing molecule in endurance of Mycobacterium tuberculosis. J. Biosci. 43, 149–154 (2018).

    CAS  PubMed  Google Scholar 

  93. Salamon, H. et al. Cutting edge: vitamin D regulates lipid metabolism in Mycobacterium tuberculosis infection. J. Immunol. 193, 30–34 (2014).

    CAS  PubMed  Google Scholar 

  94. Schaible, U. E., Sturgill-Koszycki, S., Schlesinger, P. H. & Russell, D. G. Cytokine activation leads to acidification and increases maturation of Mycobacterium avium-containing phagosomes in murine macrophages. J. Immunol. 160, 1290–1296 (1998).

    CAS  PubMed  Google Scholar 

  95. Pethe, K. et al. Isolation of Mycobacterium tuberculosis mutants defective in the arrest of phagosome maturation. Proc. Natl Acad. Sci. USA 101, 13642–13647 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Tan, S., Sukumar, N., Abramovitch, R. B., Parish, T. & Russell, D. G. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog. 9, e1003282 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Sarathy, J. P. & Dartois, V. Caseum: a niche for Mycobacterium tuberculosis drug-tolerant persisters. Clin. Microbiol. Rev. 33, e00159-19 (2020).

    PubMed  PubMed Central  Google Scholar 

  98. Irwin, S. M. et al. Bedaquiline and pyrazinamide treatment responses are affected by pulmonary lesion heterogeneity in Mycobacterium tuberculosis infected C3HeB/FeJ mice. ACS Infect. Dis. 2, 251–267 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Lanoix, J. P. et al. Selective inactivity of pyrazinamide against tuberculosis in C3HeB/FeJ mice is best explained by neutral pH of caseum. Antimicrob. Agents Chemother. 60, 735–743 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Early, J. V., Mullen, S. & Parish, T. A rapid, low pH, nutrient stress, assay to determine the bactericidal activity of compounds against non-replicating Mycobacterium tuberculosis. PLoS ONE 14, e0222970 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Raynaud, C. et al. Phospholipases C are involved in the virulence of Mycobacterium tuberculosis. Mol. Microbiol. 45, 203–217 (2002).

    CAS  PubMed  Google Scholar 

  102. Vandal, O. H., Nathan, C. F. & Ehrt, S. Acid resistance in Mycobacterium tuberculosis. J. Bacteriol. 191, 4714–4721 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gouzy, A., Healy, C., Black, K. A., Rhee, K. Y. & Ehrt, S. Growth of Mycobacterium tuberculosis at acidic pH depends on lipid assimilation and is accompanied by reduced GAPDH activity. Proc. Natl Acad. Sci. USA 118, e2024571118 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Parish, T. Two-component regulatory systems of mycobacteria. Microbiol. Spectr. 2, MGM2-0010-2013 (2014).

  105. Walters, S. B. et al. The Mycobacterium tuberculosis PhoPR two-component system regulates genes essential for virulence and complex lipid biosynthesis. Mol. Microbiol. 60, 312–330 (2006).

    CAS  PubMed  Google Scholar 

  106. Johnson, B. K. et al. The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR regulon and Esx-1 secretion and attenuates virulence. Antimicrob. Agents Chemother. 59, 4436–4445 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Fratti, R. A., Chua, J., Vergne, I. & Deretic, V. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl Acad. Sci. USA 100, 5437–5442 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Indrigo, J., Hunter, R. L. & Actor, J. K. Cord factor trehalose 6,6′-dimycolate (TDM) mediates trafficking events during mycobacterial infection of murine macrophages. Microbiology 149, 2049–2059 (2003).

    CAS  PubMed  Google Scholar 

  109. Axelrod, S. et al. Delay of phagosome maturation by a mycobacterial lipid is reversed by nitric oxide. Cell. Microbiol. 10, 1530–1545 (2008).

    CAS  PubMed  Google Scholar 

  110. Tinaztepe, E. et al. Role of metal-dependent regulation of ESX-3 secretion in intracellular survival of Mycobacterium tuberculosis. Infect. Immun. 84, 2255–2263 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. MacGurn, J. A. & Cox, J. S. A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect. Immun. 75, 2668–2678 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Augenstreich, J. et al. ESX-1 and phthiocerol dimycocerosates of Mycobacterium tuberculosis act in concert to cause phagosomal rupture and host cell apoptosis. Cell. Microbiol. 19, 10.1111/cmi.12726 (2017).

  113. Tufariello, J. A. M. et al. Separable roles for Mycobacterium tuberculosis ESX-3 effectors in iron acquisition and virulence. Proc. Natl Acad. Sci. USA 113, E348–E357 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Coulson, G. B. et al. Targeting Mycobacterium tuberculosis sensitivity to thiol stress at acidic pH kills the bacterium and potentiates antibiotics. Cell Chem. Biol. 24, 993–1004 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Goyal, N., Kashyap, B., Singh, N. P. & Kaur, I. R. Neopterin and oxidative stress markers in the diagnosis of extrapulmonary tuberculosis. Biomarkers 22, 648–653 (2017).

    CAS  PubMed  Google Scholar 

  116. Mishra, R. et al. Targeting redox heterogeneity to counteract drug tolerance in replicating Mycobacterium tuberculosis. Sci. Transl. Med. 11, aaw6635 (2019). This study reports that the drug-tolerant M. tuberculosis population increases during phagosomal acidification by altering the redox physiology.

    Google Scholar 

  117. Herb, M. & Schramm, M. Functions of ROS in macrophages and antimicrobial immunity. Antioxidants 10, 313 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Van Acker, H. & Coenye, T. The role of reactive oxygen species in antibiotic-mediated killing of bacteria. Trends Microbiol. 25, 456–466 (2017).

    PubMed  Google Scholar 

  119. Lin, K. et al. Mycobacterium tuberculosis thioredoxin reductase is essential for thiol redox homeostasis but plays a minor role in antioxidant defense. PLoS Pathog. 12, e1005675 (2016).

    PubMed  PubMed Central  Google Scholar 

  120. Ezraty, B., Gennaris, A., Barras, F. & Collet, J. F. Oxidative stress, protein damage and repair in bacteria. Nat. Rev. Microbiol. 15, 385–396 (2017).

    CAS  PubMed  Google Scholar 

  121. Foti, J. J., Devadoss, B., Winkler, J., Collins, J. & Walker, G. Oxidation of the guanine nucleotide poll underlies cell death by bactericidal antibiotics. Science 336, 315–319 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Portevin, D. et al. Lipidomics and genomics of Mycobacterium tuberculosis reveal lineage-specific trends in mycolic acid biosynthesis. Microbiologyopen 3, 823–835 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Wu, Y., Gulbins, E. & Grassmé, H. Crosstalk between sphingomyelinases and reactive oxygen species in mycobacterial infection. Antioxid. Redox Signal. 28, 935–948 (2018).

    CAS  PubMed  Google Scholar 

  124. Bryk, R., Griffin, P. & Nathan, C. Peroxynitrite reductase activity of bacterial peroxiredoxins. Nature 407, 211–215 (2000).

    CAS  PubMed  Google Scholar 

  125. Springer, B. et al. Silencing of oxidative stress response in Mycobacterium tuberculosis: expression patterns of ahpC in virulent and avirulent strains and effect of ahpC inactivation. Infect. Immun. 69, 5967–5973 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Shin, D. M. et al. Mycobacterium tuberculosis Eis regulates autophagy, inflammation, and cell death through redox-dependent signaling. PLoS Pathog. 6, e1001230 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Lu, J. & Holmgren, A. The thioredoxin antioxidant system. Free Radic. Biol. Med. 66, 75–87 (2014).

    CAS  PubMed  Google Scholar 

  128. Nambi, S. et al. The oxidative stress network of Mycobacterium tuberculosis reveals coordination between radical detoxification systems. Cell Host Microbe 17, 829–837 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Mishra, R., Yadav, V., Guha, M. & Singh, A. Heterogeneous host–pathogen encounters coordinate antibiotic resilience in Mycobacterium tuberculosis. Trends Microbiol. 29, 606–620 (2021).

    CAS  PubMed  Google Scholar 

  130. Astarie-Dequeker, C. et al. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect. Immun. 67, 469–477 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Esparza, M. et al. PstS-1, the 38-kDa Mycobacterium tuberculosis glycoprotein, is an adhesin, which binds the macrophage mannose receptor and promotes phagocytosis. Scand. J. Immunol. 81, 46–55 (2014).

    Google Scholar 

  132. Sun, J. et al. Mycobacterium tuberculosis nucleoside diphosphate kinase inactivates small GTPases leading to evasion of innate immunity. PLoS Pathog. 9, e1003499 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Vilchèze, C., Hartman, T., Weinrick, B. & Jacobs, W. R. Mycobacterium tuberculosis is extraordinarily sensitive to killing by a vitamin C-induced Fenton reaction. Nat. Commun. 4, 1881 (2013).

    PubMed  Google Scholar 

  134. Sikri, K. et al. Multifaceted remodeling by vitamin C boosts sensitivity of Mycobacterium tuberculosis subpopulations to combination treatment by anti-tubercular drugs. Redox Biol. 15, 452–466 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Via, L. E. et al. Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect. Immun. 76, 2333–2340 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Harper, J. et al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J. Infect. Dis. 205, 595–602 (2012).

    CAS  PubMed  Google Scholar 

  137. Leistikow, R. L. et al. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J. Bacteriol. 192, 1662–1670 (2010).

    CAS  PubMed  Google Scholar 

  138. Oehlers, S. H. et al. Interception of host angiogenic signalling limits mycobacterial growth. Nature 517, 612–615 (2015).

    CAS  PubMed  Google Scholar 

  139. Yang, H. et al. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg. Microbes Infect. 7, 34 (2018).

    PubMed  PubMed Central  Google Scholar 

  140. Schnappinger, D. et al. Transcriptional adaptation of Mycobacterium tuberculosis within macrophages: Insights into the phagosomal environment. J. Exp. Med. 198, 693–704 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. Galagan, J. E. et al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature 499, 178–183 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Irwin, S. M. et al. Limited activity of clofazimine as a single drug in a mouse model of tuberculosis exhibiting caseous necrotic granulomas. Antimicrob. Agents Chemother. 58, 4026–4034 (2014).

    PubMed  PubMed Central  Google Scholar 

  143. Lin, P. L. et al. Metronidazole prevents reactivation of latent Mycobacterium tuberculosis infection in macaques. Proc. Natl Acad. Sci. USA 109, 14188–14193 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. Zhang, Y. Metronidazole validates drugs targeting hypoxic bacteria for improved treatment of tuberculosis. Proc. Natl Acad. Sci. USA 109, 13890–13891 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  145. Iacobino, A., Giannoni, F., Pardini, M., Piccaro, G. & Fattorini, L. The combination rifampin-nitazoxanide, but not rifampin-isoniazid-pyrazinamide-ethambutol, kills dormant Mycobacterium tuberculosis in hypoxia at neutral pH. Antimicrob. Agents Chemother. 63, e00273-19 (2019).

    PubMed  PubMed Central  Google Scholar 

  146. Torrey, H. L., Keren, I., Via, L. E., Lee, J. S. & Lewis, K. High persister mutants in Mycobacterium tuberculosis. PLoS ONE 11, e0155127 (2016).

    PubMed  PubMed Central  Google Scholar 

  147. Balaban, N. Q. et al. Definitions and guidelines for research on antibiotic persistence. Nat. Rev. Microbiol. 17, 441–448 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Vaubourgeix, J. et al. Stressed mycobacteria use the chaperone ClpB to sequester irreversibly oxidized proteins asymmetrically within and between cells. Cell Host Microbe 17, 178–190 (2015). This study shows that IOP aggregates are distributed asymmetrically within bacteria. It shows that progeny with various IOP burdens show different growth rates and survival in the presence of antibiotic stress.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Dukan, S. & Nyström, T. Bacterial senescence: stasis results in increased and differential oxidation of cytoplasmic proteins leading to developmental induction of the heat shock regulon. Genes. Dev. 12, 3431–3441 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Hartl, F. U., Bracher, A. & Hayer-Hartl, M. Molecular chaperones in protein folding and proteostasis. Nature 475, 324–332 (2011).

    CAS  PubMed  Google Scholar 

  151. Barak, Z., Gallant, J., Lindsley, D., Kwieciszewki, B. & Heidel, D. Enhanced ribosome frameshifting in stationary phase cells. J. Mol. Biol. 263, 140–148 (1996).

    CAS  PubMed  Google Scholar 

  152. Dukan, S. et al. Protein oxidation in response to increased transcriptional or translational errors. Proc. Natl Acad. Sci. USA 97, 5746–5749 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Ballesteros, M., Fredriksson, Å., Henriksson, J. & Nyström, T. Bacterial senescence: protein oxidation in non-proliferating cells is dictated by the accuracy of the ribosomes. EMBO J. 20, 5280–5289 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Grant, S. S., Kaufmann, B. B., Chand, N. S., Haseley, N. & Hung, D. T. Eradication of bacterial persisters with antibiotic-generated hydroxyl radicals. Proc. Natl Acad. Sci. USA 109, 12147–12152 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Nandakumar, M., Nathan, C. & Rhee, K. Y. Isocitrate lyase mediates broad antibiotic tolerance in Mycobacterium tuberculosis. Nat. Commun. 5, 4306 (2014).

    CAS  PubMed  Google Scholar 

  156. Baker, J. J. & Abramovitch, R. B. Genetic and metabolic regulation of Mycobacterium tuberculosis acid growth arrest. Sci. Rep. 8, 4168 (2018).

    PubMed  PubMed Central  Google Scholar 

  157. Mukamolova, G. V., Turapov, O., Malkin, J., Woltmann, G. & Barer, M. R. Resuscitation-promoting factors reveal an occult population of tubercle bacilli in sputum. Am. J. Respir. Crit. Care Med. 181, 174–180 (2010). This study finds an M. tuberculosis population from human sputum samples that grows only in the presence of resuscitation-promoting factors.

    CAS  PubMed  Google Scholar 

  158. Gordhan, B. G. et al. Detection of differentially culturable tubercle bacteria in sputum using mycobacterial culture filtrates. Sci. Rep. 11, 6493 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Turapov, O. et al. Phenotypically adapted Mycobacterium tuberculosis populations from sputum are tolerant to first-line drugs. Antimicrob. Agents Chemother. 60, 2476–2483 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  160. Singh, V. & Mizrahi, V. Identification and validation of novel drug targets in Mycobacterium tuberculosis. Drug. Discov. Today 22, 503–509 (2017).

    CAS  PubMed  Google Scholar 

  161. Aldridge, B. B. et al. The Tuberculosis Drug Accelerator at year 10: what have we learned? Nat. Med. 27, 1329–1333 (2021).

    Google Scholar 

  162. Ernest, J. P. et al. Development of new tuberculosis drugs: translation to regimen composition for drug-sensitive and multidrug-resistant tuberculosis. Annu. Rev. Pharmacol. Toxicol. 61, 495–516 (2021).

    CAS  PubMed  Google Scholar 

  163. Priestman, M., Thomas, P., Robertson, B. D. & Shahrezaei, V. Mycobacteria modify their cell size control under sub-optimal carbon sources. Front. Cell Dev. Biol. 5, 64 (2017).

    PubMed  PubMed Central  Google Scholar 

  164. Jennewein, J. et al. Low-oxygen tensions found in Salmonella-infected gut tissue boost Salmonella replication in macrophages by impairing antimicrobial activity and augmenting Salmonella virulence. Cell. Microbiol. 17, 1833–1847 (2015).

    CAS  PubMed  Google Scholar 

  165. Bloemberg, G. V. et al. Acquired resistance to bedaquiline and delamanid in therapy for tuberculosis. N. Engl. J. Med. 373, 1986–1988 (2015).

    PubMed  PubMed Central  Google Scholar 

  166. Schön, T. et al. Mycobacterium tuberculosis drug-resistance testing: challenges, recent developments and perspectives. Clin. Microbiol. Infect. 23, 154–160 (2017).

    PubMed  Google Scholar 

  167. Georghiou, S. B. et al. Guidance for studies evaluating the accuracy of rapid tuberculosis drug-susceptibility tests. J. Infect. Dis. 220, S126–S135 (2019).

    CAS  PubMed  Google Scholar 

  168. World Health Organization. High-priority target product profiles for new tuberculosis diagnostics: report of a consensus meeting, 28–29 April, Geneva, Switzerland. https://apps.who.int/iris/handle/10665/135617 (2014).

  169. Gilpin, C., Korobitsyn, A. & Weyer, K. Current tools available for the diagnosis of drug-resistant tuberculosis. Ther. Adv. Infect. Dis. 3, 145–151 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  170. Dookie, N., Rambaran, S., Padayatchi, N., Mahomed, S. & Naidoo, K. Evolution of drug resistance in Mycobacterium tuberculosis: a review on the molecular determinants of resistance and implications for personalized care. J. Antimicrob. Chemother. 73, 1138–1151 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  171. Juréen, P. et al. Wild-type MIC distributions for aminoglycoside and cyclic polypeptide antibiotics used for treatment of Mycobacterium tuberculosis infections. J. Clin. Microbiol. 48, 1853–1858 (2010).

    PubMed  PubMed Central  Google Scholar 

  172. Ängeby, K., Juréen, P., Kahlmeter, G., Hoffner, S. E. & Schönd, T. Challenging a dogma: antimicrobial susceptibility testing breakpoints for Mycobacterium tuberculosis. Bull. World Health Organ. 90, 693–698 (2012).

    PubMed  PubMed Central  Google Scholar 

  173. EUCAST. SOP for calibrating surrogate MIC methods for M. tuberculosis against the EUCAST reference MIC method. 2–4 (2019).

  174. Hett, E. C. et al. A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis. Mol. Microbiol. 66, 658–668 (2007).

    CAS  PubMed  Google Scholar 

  175. Hett, E. C., Chao, M. C., Deng, L. L. & Rubin, E. J. A mycobacterial enzyme essential for cell division synergizes with resuscitation-promoting factor. PLoS Pathog. 4, e1000001 (2008).

    PubMed  PubMed Central  Google Scholar 

  176. Nikitushkin, V. D. et al. A product of RpfB and RipA joint enzymatic action promotes the resuscitation of dormant mycobacteria. FEBS J. 282, 2500–2511 (2015).

    CAS  PubMed  Google Scholar 

  177. Chengalroyen, M. D. et al. Detection and quantification of differentially culturable tubercle bacteria in sputum from patients with tuberculosis. Am. J. Respir. Crit. Care Med. 194, 1532–1540 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Dusthackeer, A. et al. Differential culturability of Mycobacterium tuberculosis in culture-negative sputum of patients with pulmonary tuberculosis and in a simulated model of dormancy. Front. Microbiol. 10, 1–9 (2019).

    Google Scholar 

Download references

Acknowledgements

Work in B.B.A.’s laboratory was funded, in part, by the Bill and Melinda Gates Foundation (OPP1204444) and the NIH (R01 AI143611-01).

Author information

Authors and Affiliations

Authors

Contributions

E.S.C. and W.C.J. researched data for the article. B.B.A., E.S.C. and W.C.J. contributed to the discussion of the content, wrote the article, and reviewed and edited the manuscript.

Corresponding author

Correspondence to Bree B. Aldridge.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks Suzie Hingley-Wilson, who co-reviewed with Joanna Urbaniec, Olivier Neyrolles, Julien Vaubourgeix, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Granulomas

Complex lesion structures that form during tuberculosis pathogenesis and consist of immune cells, epithelioid cells and necrotic tissue.

Macrophage activation

A change in physiology in response to signals from adaptive or innate immune mechanisms that enable macrophages to perform specialized effector functions.

Necrotic caseum

Lipid-rich environment within granulomas derived primarily from necrotic cellular debris.

Divisome

Protein complex responsible for performing membrane division and cell wall division functions.

Accelerator cell

A cell that inherits the pole from which its mother cell grew and usually elongates at a higher rate than alternator cells.

Alternator cell

A cell that generates a new growth pole upon birth and elongates at a lower rate than accelerator cells.

Glycopeptidolipids

Lipids of a type present on the outer leaflet mycobacterial envelope that influence biofilm formation, growth and pathogenicity.

Isogenic sister cells

Cells born from the same mother and that share identical genotypes.

Minimum inhibitory concentration

The lowest concentration of a drug that will inhibit growth.

Collaborative crosses

Panels of mouse strains with significant genomic variation designed to mimic the heterogeneity of the human population and its spectrum of disease phenotypes.

Foamy macrophages

Macrophages that are abundant in intracellular lipid droplets formed from pathogen-induced perturbation of lipid biosynthesis.

Virulence factors

Components of a pathogen that enable it to invade and colonize a host.

Secretion systems

Molecular nanomachines present on the outer surface of a pathogen that secrete substrates to promote pathogenicity.

Antimicrobial breakpoints

The lowest concentration of a drug that will inhibit the growth of almost all wild type strains (95%) of the organism but does not inhibit clinical strains that are resistant.

Pharmacokinetics–pharmacodynamics

The relationship between drug distribution, absorption, metabolism and concentration in the human body over time.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chung, E.S., Johnson, W.C. & Aldridge, B.B. Types and functions of heterogeneity in mycobacteria. Nat Rev Microbiol (2022). https://doi.org/10.1038/s41579-022-00721-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41579-022-00721-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing