Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The marine nitrogen cycle: new developments and global change

A Publisher Correction to this article was published on 23 May 2022

This article has been updated

Abstract

The ocean is home to a diverse and metabolically versatile microbial community that performs the complex biochemical transformations that drive the nitrogen cycle, including nitrogen fixation, assimilation, nitrification and nitrogen loss processes. In this Review, we discuss the wealth of new ocean nitrogen cycle research in disciplines from metaproteomics to global biogeochemical modelling and in environments from productive estuaries to the abyssal deep sea. Influential recent discoveries include new microbial functional groups, novel metabolic pathways, original conceptual perspectives and ground-breaking analytical capabilities. These emerging research directions are already contributing to urgent efforts to address the primary challenge facing marine microbiologists today: the unprecedented onslaught of anthropogenic environmental change on marine ecosystems. Ocean warming, acidification, nutrient enrichment and seawater stratification have major effects on the microbial nitrogen cycle, but widespread ocean deoxygenation is perhaps the most consequential for the microorganisms involved in both aerobic and anaerobic nitrogen transformation pathways. In turn, these changes feed back to the global cycles of greenhouse gases such as carbon dioxide and nitrous oxide. At a time when our species casts a lengthening shadow across all marine ecosystems, timely new advances offer us unique opportunities to understand and better predict human impacts on nitrogen biogeochemistry in the changing ocean of the Anthropocene.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The marine nitrogen cycle.
Fig. 2: Nitrogen fixation rates and abundance of dominant diazotrophs in coastal and open ocean regimes of the northwest Atlantic Ocean.
Fig. 3: Abundance of nitrite oxidoreductase proteins in low-O2 subsurface waters of the Equatorial Pacific Ocean.
Fig. 4: Human impacts on the marine nitrogen cycle, including deoxygenation.
Fig. 5: Modelled annual anthropogenic iron supply and surface nitrate concentrations in the North Pacific Ocean.

Change history

References

  1. Mills, E. L. Biological Oceanography: An Early History 1870–1960 (Univ. Toronto Press, 2012).

  2. Redfield, A. C. in James Johnstone Memorial Volume 176–192 (Univ. Press of Liverpool, 1934).

  3. Waksman, S. A., Hotchkiss, M. & Carey, C. L. Marine bacteria and their role in the cycle of life of the sea: II. Bacteria concerned with the cycle of nitrogen in the sea. Biol. Bull. 65, 137–167 (1933).

    Article  Google Scholar 

  4. Roy, S. et al. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 32, 15–41 (2020).

    CAS  PubMed  Article  Google Scholar 

  5. Joint, I., Mühling, M. & Querellou, J. Culturing marine bacteria–an essential prerequisite for biodiscovery. Microb. Biotechnol. 3, 564–575 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. Oremland, R. S., Capone, D. G., Stolz, J. F., Fuhrman, J. & Zengler, K. Whither or wither geomicrobiology in the era of “Community Metagenomics”. Nat. Microbiol. 3, 572–578 (2005).

    CAS  Article  Google Scholar 

  7. Claustre, H., Johnson, K. S. & Takeshita, Y. Observing the global ocean with biogeochemical-Argo. Annu. Rev. Mar. Sci. 12, 23–48 (2020).

    Article  Google Scholar 

  8. Johnson, K. S., Riser, S. C. & Ravichandran, M. Oxygen variability controls denitrification in the bay of Bengal oxygen minimum zone. Geophys. Res. Lett. 46, 804–811 (2019).

    CAS  Article  Google Scholar 

  9. Sunagawa, S. et al. Tara Oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    CAS  PubMed  Article  Google Scholar 

  10. Sloyan, B. M. et al. The global ocean ship-based hydrographic investigations program (GO-SHIP): a platform for integrated multidisciplinary ocean science. Front. Mar. Sci. 6, 445 (2019).

    Article  Google Scholar 

  11. Raes, E. J. et al. N2 fixation and new insights into nitrification from the ice-edge to the equator in the South Pacific Ocean. Front. Mar. Sci. 7, 389 (2020).

    Article  Google Scholar 

  12. Gruber, N. & Galloway, J. N. An Earth-system perspective of the global nitrogen cycle. Nature 451, 293–296 (2008).

    CAS  PubMed  Article  Google Scholar 

  13. Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889 (2008).

    CAS  PubMed  Article  Google Scholar 

  14. Hutchins, D. A. & Fu, F. Microorganisms and ocean global change. Nat. Microbiol. 2, 17058 (2017).

    CAS  PubMed  Article  Google Scholar 

  15. Owens, N. & Watts, L. in Stable Isotopes: The Integration of Biological, Ecological and Geochemical Processes 257–283 (Garland Science, 2020).

  16. Bronk, D., See, J., Bradley, P. & Killberg, L. DON as a source of bioavailable nitrogen for phytoplankton. Biogeosciences 4, 283–296 (2007).

    CAS  Article  Google Scholar 

  17. Morando, M. & Capone, D. G. Direct utilization of organic nitrogen by phytoplankton and its role in nitrogen cycling within the Southern California bight. Front. Microbiol. 9, 02118 (2018).

    Article  Google Scholar 

  18. Widner, B., Mordy, C. W. & Mulholland, M. R. Cyanate distribution and uptake above and within the Eastern Tropical South Pacific oxygen deficient zone. Limnol. Oceanogr. 63, S177–S192 (2018).

    CAS  Article  Google Scholar 

  19. Karl, D. M. et al. The role of nitrogen fixation in biogeochemical cycling in the subtropical north Pacific ocean. Nature 388, 533–538 (1997).

    CAS  Article  Google Scholar 

  20. Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).

    CAS  PubMed  Article  Google Scholar 

  21. Hutchins, D. A. & Sañudo-Wilhelmy, S. A. The enzymology of ocean global change. Ann. Rev. Marine Sci. 14, 187–211 (2022).

    Article  Google Scholar 

  22. Hutchins, D. & Boyd, P. Marine phytoplankton and the changing ocean iron cycle. Nat. Clim. Chang. 6, 1072–11079 (2016).

    CAS  Article  Google Scholar 

  23. Zehr, J. & Capone, D. G. Marine Nitrogen Fixation (Springer, 2021).

  24. Zehr, J. P. et al. Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean. Nature 412, 635–638 (2001).

    CAS  PubMed  Article  Google Scholar 

  25. Shiozaki, T. et al. Biological nitrogen fixation detected under Antarctic sea ice. Nat. Geosci. 13, 729–732 (2020).

    CAS  Article  Google Scholar 

  26. Harding, K. et al. Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic Ocean. Proc. Natl Acad. Sci. USA 115, 13371–13375 (2018).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  27. Zehr, J., Shilova, I. N., Farnelid, H. M., del Carmen Muñoz-Marín, M. & Turk-Kubo, K. A. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat. Microbiol. 2, 16214 (2016).

    PubMed  Article  CAS  Google Scholar 

  28. Thompson, A. W. et al. Unicellular cyanobacterium symbiotic with a single-celled eukaryotic alga. Science 337, 1546–1550 (2012).

    CAS  PubMed  Article  Google Scholar 

  29. Muñoz-Marín, M. D. C. et al. The transcriptional cycle is suited to daytime N2 fixation in the unicellular cyanobacterium “Candidatus Atelocyanobacterium thalassa” (UCYN-A). mBio 10, e02495-18 (2019).

    PubMed  PubMed Central  Article  Google Scholar 

  30. Martinez-Perez, C. et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat. Microbiol. 1, 16163 (2016).

    CAS  PubMed  Article  Google Scholar 

  31. Turk-Kubo, K. A., Farnelid, H. M., Shilova, I. N., Henke, B. & Zehr, J. P. Distinct ecological niches of marine symbiotic N2-fixing cyanobacterium Candidatus Atelocyanobacterium thalassa sublineages. J. Phycol. 53, 451–461 (2017).

    CAS  PubMed  Article  Google Scholar 

  32. Cerdan-Garcia, E. et al. Transcriptional responses of Trichodesmium to natural antithetical gradients of Fe and P availability. ISME J. https://doi.org/10.1038/s41396-021-01151-1 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Delmont, T. O. Discovery of non-diazotrophic Trichodesmium species abundant and widespread in the open ocean. Proc. Natl Acad. Sci. USA 118, e2112355118 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Caputo, A., Nylander, J. A. & Foster, R. A. The genetic diversity and evolution of diatom-diazotroph associations highlights traits favoring symbiont integration. FEMS Microbiol. Lett. 366, fny297 (2019).

    CAS  PubMed Central  Article  Google Scholar 

  35. Nakayama, T. & Inagaki, Y. Genomic divergence within non-photosynthetic cyanobacterial endosymbionts in rhopalodiacean diatoms. Sci. Rep. 7, 13075 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Karlusich, J. J. P. et al. Global distribution patterns of marine nitrogen-fixers by imaging and molecular methods. Nat. Commun. 12, 4160 (2021).

    Article  CAS  Google Scholar 

  37. Moisander, P. H. et al. Chasing after non-cyanobacterial nitrogen fixation in marine pelagic environments. Front. Microbiol. 8, 1736 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  38. Bombar, D., Paerl, R. W. & Riemann, L. Marine non-cyanobacterial diazotrophs: moving beyond molecular detection. Trends Microbiol. 24, 916–927 (2016).

    CAS  PubMed  Article  Google Scholar 

  39. Benavides, M. et al. Aphotic N-2 fixation along an oligotrophic to ultraoligotrophic transect in the western tropical South Pacific Ocean. Biogeosciences 15, 3107–3119 (2018).

    CAS  Article  Google Scholar 

  40. Wu, S. et al. Insights into nitrogen fixation below the euphotic zone: trials in an oligotrophic marginal sea and global compilation. Biogeosci. Discuss. https://doi.org/10.5194/bg-2021-104 (2021).

    Article  Google Scholar 

  41. Farnelid, H. et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE 6, e19223 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Cornejo-Castillo, F. M. & Zehr, J. P. Intriguing size distribution of the uncultured and globally widespread marine non-cyanobacterial diazotroph Gamma-A. ISME J. 15, 124–128 (2021).

    CAS  PubMed  Article  Google Scholar 

  43. Cheung, S. et al. Gamma4: a genetically versatile Gammaproteobacterial nifH phylotype that is widely distributed in the North Pacific Ocean. Environ. Microbiol. 23, 4246–4259 (2021).

    CAS  PubMed  Article  Google Scholar 

  44. Chakraborty, S. et al. Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine particles. Nat. Commun. 12, 4085 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. Kapili, B. J., Samuel, E. B., Daniel, H. B. & Dekas, A. E. Evidence for phylogenetically and catabolically diverse active diazotrophs in deep-sea sediment. ISME J. 14, 971–983 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Eichner, M. J. et al. Chemical microenvironments and single-cell carbon and nitrogen uptake in field-collected colonies of Trichodesmium under different pCO2. ISME J. 11, 1305 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Benavides, M., Bonnet, S., Berman-Frank, I. & Riemann, L. Deep into oceanic N2 fixation. Front. Mar. Sci. 5, 108 (2018).

    Article  Google Scholar 

  48. Gruber, N. & Sarmiento, J. Global patterns of marine nitrogen fixation and denitrification. Glob. Biogeochem. Cycles 11, 235–266 (1997).

    CAS  Article  Google Scholar 

  49. Weber, T. & Deutsch, C. Local versus basin-scale limitation of marine nitrogen fixation. Proc. Natl Acad. Sci. USA 111, 8741–8746 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  50. Marconi, D. et al. Tropical dominance of N2 fixation in the North Atlantic Ocean. Glob. Biogeochem. Cycles 31, 1608–1623 (2017).

    CAS  Article  Google Scholar 

  51. Devol, A. H. & Hartnett, H. E. Role of the oxygen-deficient zone in transfer of organic carbon to the deep ocean. Limnol. Oceanogr. 46, 1684–1690 (2001).

    CAS  Article  Google Scholar 

  52. Selden, C. et al. Dinitrogen fixation across physico-chemical gradients of the Eastern Tropical North Pacific oxygen deficient zone. Global Biogeochem. Cycles 33, 1187–1202 (2019).

    CAS  Article  Google Scholar 

  53. Turk-Kubo, K. A., Karamchandani, M., Foster, R., Capone, D. G. & Zehr, J. P. The paradox of marine heterotrophic nitrogen fixation: abundances of heterotrophic diazotrophs do not account for nitrogen fixation rates in the Eastern Tropical South Pacific. Environ. Microbiol. 16, 3095–3114 (2014).

    CAS  PubMed  Article  Google Scholar 

  54. Selden, C. R., Mulholland, M. R., Widner, B., Bernhardt, P. & Jayakumar, A. Toward resolving disparate accounts of the extent and magnitude of nitrogen fixation in the Eastern Tropical South Pacific oxygen deficient zone. Limnol. Oceanogr. 66, 1950–1960 (2021).

    CAS  Article  Google Scholar 

  55. Breitburg, D. et al. Declining oxygen in the global ocean and coastal waters. Science 359, eem7240 (2018).

    Article  CAS  Google Scholar 

  56. Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecol. Lett. 3, 58–71 (2000).

    Article  Google Scholar 

  57. Benavides, M., Bednarz, V. N. & Ferrier-Pagès, C. Diazotrophs: overlooked key players within the coral symbiosis and tropical reef ecosystems? Front. Marine Sci. 4, 00010 (2017).

    Article  Google Scholar 

  58. Cardini, U. et al. Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J. 13, 3131–3134 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  59. Middelburg, J. J. et al. Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. Sci. Rep. 5, 17962 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  60. Mohr, W. et al. Terrestrial-type N2-fixing symbiosis between seagrass and a marine bacterium. Nature 600, 105–109 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  61. Dekas, A. et al. Widespread nitrogen fixation in sediments from diverse deep-sea sites of elevated carbon loading. Environ. Microbiol. 20, 4281–4296 (2018).

    CAS  PubMed  Article  Google Scholar 

  62. Benavides, M. et al. Fine-scale sampling unveils diazotroph patchiness in the South Pacific Ocean. ISME Commun. 1, 3 (2021).

    Article  Google Scholar 

  63. Tang, W. et al. New insights into the distributions of nitrogen fixation and diazotrophs revealed by high-resolution sensing and sampling methods. ISME J. 14, 2514–2526 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Selden, C. R. et al. A coastal N2 fixation hotspot at the Cape Hatteras front: elucidating spatial heterogeneity in diazotroph activity via supervised machine learning. Limnol. Oceanogr. 66, 1832–1849 (2021).

    CAS  Article  Google Scholar 

  65. Dabundo, R. et al. The contamination of commercial 15N2 gas stocks with 15N-labeled nitrate and ammonium and consequences for nitrogen fixation measurements. PLoS ONE 9, e110335 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Mohr, W., Grosskopf, T., Wallace, D. W. R., LaRoche, J. & Finkel, Z. Methodological underestimation of oceanic nitrogen fixation rates. PLoS ONE 5, e12583 (2010).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  67. Tang, W. et al. Revisiting the distribution of oceanic N2 fixation and estimating diazotrophic contribution to marine production. Nat. Commun. 10, 831 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  68. Cassar, N., Tang, W., Gabathuler, H. & Huang, K. Method for high frequency underway N2 fixation measurements: flow-through incubation acetylene reduction assays by cavity ring down laser absorption spectroscopy (FARACAS). Anal. Chem. 90, 2839–2851 (2018).

    CAS  PubMed  Article  Google Scholar 

  69. Robidart, J. C. et al. Ecogenomic sensor reveals controls on N2-fixing microorganisms in the North Pacific Ocean. ISME J. 8, 1175–1185 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  70. Held, N. A. et al. Co-occurrence of Fe and P stress in natural populations of the marine diazotroph Trichodesmium. Biogeosciences 17, 2537–2551 (2020).

    Article  Google Scholar 

  71. Hu, C., Cannizzaro, J., Carder, K. L., Muller-Karger, F. E. & Hardy, R. Remote detection of Trichodesmium blooms in optically complex coastal waters: examples with MODIS full-spectral data. Remote. Sens. Environ. 114, 2048–2058 (2010).

    Article  Google Scholar 

  72. Blondeau-Patissier, D., Brando, V. E., Lønborg, C., Leahy, S. M. & Dekker, A. G. Phenology of Trichodesmium spp. blooms in the Great Barrier Reef lagoon, Australia, from the ESA-MERIS 10-year mission. PLoS ONE 13, e0208010 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  73. McKinna, L. I. Three decades of ocean-color remote-sensing Trichodesmium spp. in the World’s oceans: a review. Prog. Oceanogr. 131, 177–199 (2015).

    Article  Google Scholar 

  74. Zappa, C. J. et al. Using Ship-deployed high-endurance unmanned aerial vehicles for the study of ocean surface and atmospheric boundary layer processes. Front. Marine Sci. 6, 00777 (2020).

    Article  Google Scholar 

  75. Tang, W. & Cassar, N. Data-driven modeling of the distribution of diazotrophs in the global ocean. Geophys. Res. Lett. 46, 12258–12269 (2019).

    Article  Google Scholar 

  76. Tang, W., Li, Z. & Cassar, N. Machine learning estimates of global marine nitrogen fixation. J. Geophys. Res. Biogeosci. 124, 717–730 (2019).

    CAS  Article  Google Scholar 

  77. Monteiro, F. M., Follows, M. J. & Dutkiewicz, S. Distribution of diverse nitrogen fixers in the global ocean. Glob. Biogeochem. Cycles 24, GB3017 (2010).

    Article  CAS  Google Scholar 

  78. Wang, W.-L., Moore, J. K., Martiny, A. C. & Primeau, F. W. Convergent estimates of marine nitrogen fixation. Nature 566, 205 (2019).

    CAS  PubMed  Article  Google Scholar 

  79. Knapp, A., Casciotti, K., Berelson, W., Prokopenko, M. & Capone, D. Low rates of nitrogen fixation in eastern tropical South Pacific surface waters. Proc. Natl Acad. Sci. USA 113, 4398–4403 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Dutkiewicz, S., Ward, B., Scott, J. & Follows, M. Understanding predicted shifts in diazotroph biogeography using resource competition theory. Biogeosciences 11, 5445–5461 (2014).

    Article  Google Scholar 

  81. Wrightson, L. & Tagliabue, A. Quantifying the impact of climate change on marine diazotrophy: insights from earth system models. Front. Mar. Sci. 7, 635 (2020).

    Article  Google Scholar 

  82. Kitzinger, K. et al. Cyanate and urea are substrates for nitrification by Thaumarchaeota in the marine environment. Nat. Microbiol. 4, 234–243 (2019).

    CAS  PubMed  Article  Google Scholar 

  83. Damashek, J. et al. Microbial oxidation of nitrogen supplied as selected organic nitrogen compounds in the South Atlantic Bight. Limnol. Oceanogr. 64, 982–995 (2019).

    CAS  Article  Google Scholar 

  84. Ward, B. B. in Nitrification (eds Ward, B. B., Arp, D. J. & Klotz, M. G.) 326–346 (ASM, 2011).

  85. Xia, F. et al. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microbiol. 84, e01390-18 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  86. Sun, D. et al. Distribution and diversity of comammox Nitrospira in coastal wetlands of China. Front. Microbiol. 11, 2480 (2020).

    Google Scholar 

  87. Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  88. Kits, K. D. et al. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  89. Kitzinger, K. et al. Characterization of the first “Candidatus Nitrotoga” isolate reveals metabolic versatility and separate evolution of widespread nitrite-oxidizing bacteria. mBio 9, e01186-18 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  90. Ishii, K., Fujitani, H., Sekiguchi, Y. & Tsuneda, S. Physiological and genomic characterization of a new ‘Candidatus Nitrotoga’isolate. Environ. Microbiol. 22, 2365–2382 (2020).

    CAS  PubMed  Article  Google Scholar 

  91. Park, S.-J. et al. Expanded diversity and metabolic versatility of marine nitrite-oxidizing bacteria revealed by cultivation-and genomics-based approaches. Appl. Environ. Microbiol. 86, e01667-20 (2020).

    PubMed  PubMed Central  Article  Google Scholar 

  92. Kim, J.-G. et al. Hydrogen peroxide detoxification is a key mechanism for growth of ammonia-oxidizing archaea. Proc. Natl Acad. Sci. USA 113, 7888–7893 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Laperriere, S. M. et al. Nitrification and nitrous oxide dynamics in the Southern California Bight. Limnol. Oceanogr. 66, 1099–1112 (2020).

    Article  CAS  Google Scholar 

  95. Stephens, B. M. et al. Euphotic zone nitrification in the California Current Ecosystem. Limnol. Oceanogr. 65, 790–806 (2020).

    CAS  Article  Google Scholar 

  96. Wuchter, C. et al. Archaeal nitrification in the ocean. Proc. Natl Acad. Sci. USA 103, 12317–12322 (2006).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  97. Bristow, L. A. et al. Biogeochemical and metagenomic analysis of nitrite accumulation in the Gulf of Mexico hypoxic zone. Limnol. Oceanogr. 60, 1733–1750 (2015).

    Article  Google Scholar 

  98. Baltar, F. & Herndl, G. J. Ideas and perspectives: Is dark carbon fixation relevant for oceanic primary production estimates? Biogeosciences 16, 3793–3799 (2019).

    CAS  Article  Google Scholar 

  99. Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).

    CAS  PubMed  Article  Google Scholar 

  100. Bristow, L. A. et al. Ammonium and nitrite oxidation at nanomolar oxygen concentrations in oxygen minimum zone waters. Proc. Natl Acad. Sci. USA 113, 10601–10606 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Sun, X. & Ward, B. B. Novel metagenome-assembled genomes involved in the nitrogen cycle from a Pacific oxygen minimum zone. ISME Commun. 1, 26 (2021).

    Article  Google Scholar 

  102. Peng, X. et al. Revisiting nitrification in the Eastern Tropical South Pacific: a focus on controls. J. Geophys. Res. Oceans 121, 1667–1684 (2016).

    CAS  Article  Google Scholar 

  103. Ruiz-Fernández, P., Ramírez-Flandes, S., Rodríguez-León, E. & Ulloa, O. Autotrophic carbon fixation pathways along the redox gradient in oxygen-depleted oceanic waters. Environ. Microbiol. Rep. 12, 334–341 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  104. Saito, M. A. et al. Abundant nitrite-oxidizing metalloenzymes in the mesopelagic zone of the tropical Pacific Ocean. Nat. Geosci. 13, 355–362 (2020).

    CAS  Article  Google Scholar 

  105. Bayer, B. et al. Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. ISME J. 15, 1025–1039 (2021).

    CAS  PubMed  Article  Google Scholar 

  106. Sun, X., Frey, C., Garcia-Robledo, E., Jayakumar, A. & Ward, B. B. Microbial niche differentiation explains nitrite oxidation in marine oxygen minimum zones. ISME J. 15, 1317–1329 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Oschlies, A., Brandt, P., Stramma, L. & Schmidtko, S. Drivers and mechanisms of ocean deoxygenation. Nat. Geosci. 11, 467–473 (2018).

    CAS  Article  Google Scholar 

  108. Garcia-Robledo, E. et al. Cryptic oxygen cycling in anoxic marine zones. Proc. Natl Acad. Sci. USA 114, 8319–8324 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  109. Fuchsman, C. A. et al. Cyanobacteria and cyanophage contributions to carbon and nitrogen cycling in an oligotrophic oxygen-deficient zone. ISME J. 13, 2714–2726 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. Wu, M. L. et al. A new intra-aerobic metabolism in the nitrite-dependent anaerobic methane-oxidizing bacterium Candidatus ‘Methylomirabilis oxyfera’. Biochem. Soc. Trans. 39, 243–248 (2011).

    CAS  PubMed  Article  Google Scholar 

  111. Padilla, C. C. et al. NC10 bacteria in marine oxygen minimum zones. ISME J. 10, 2067–2071 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  112. Kraft, B. et al. Oxygen production by an ammonia-oxidizing archaeon. Science 375, 97–100 (2022).

    CAS  PubMed  Article  Google Scholar 

  113. Konneke, M. et al. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437, 543–546 (2005).

    PubMed  Article  CAS  Google Scholar 

  114. Füssel, J. et al. Adaptability as the key to success for the ubiquitous marine nitrite oxidizer Nitrococcus. Sci. Adv. 3, e1700807 (2017).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  115. Devol, A. H. Denitrification, anammox, and N2 production in marine sediments. Annu. Rev. Mar. Sci. 7, 403–423 (2015).

    Article  Google Scholar 

  116. Kuenen, J. G. Anammox and beyond. Environ. Microbiol. 22, 525–536 (2020).

    PubMed  Article  Google Scholar 

  117. Hu, Z., Wessels, H. J., van Alen, T., Jetten, M. S. & Kartal, B. Nitric oxide-dependent anaerobic ammonium oxidation. Nat. Commun. 10, 1244 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  118. Babbin, A. R., Buchwald, C., Morel, F. M., Wankel, S. D. & Ward, B. B. Nitrite oxidation exceeds reduction and fixed nitrogen loss in anoxic Pacific waters. Mar. Chem. 224, 103814 (2020).

    CAS  Article  Google Scholar 

  119. Altieri, K. E., Fawcett, S. E. & Hastings, M. G. Reactive nitrogen cycling in the atmosphere and ocean. Annu. Rev. Earth Planet. Sci. 49, 523–550 (2021).

    CAS  Article  Google Scholar 

  120. Chang, B. X., Devol, A. H. & Emerson, S. R. Denitrification and the nitrogen gas excess in the eastern tropical South Pacific oxygen deficient zone. Deep Sea Res. Part I Oceanogr. Res. Pap. 57, 1092–1101 (2010).

    CAS  Article  Google Scholar 

  121. Glud, R. N. et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2, 21 (2021).

    Article  Google Scholar 

  122. Nunoura, T. et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes Environ. 33, 186–194 (2018).

    PubMed  PubMed Central  Article  Google Scholar 

  123. Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc. Natl Acad. Sci. USA 118, e2104529118 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  124. Zhang, X., Ward, B. B. & Sigman, D. M. Global nitrogen cycle: critical enzymes, organisms, and processes for nitrogen budgets and dynamics. Chem. Rev. 120, 5308–5351 (2020).

    CAS  PubMed  Article  Google Scholar 

  125. Lam, P. et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone. Proc. Natl Acad. Sci. USA 106, 4752 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  126. Fuchsman, C. A., Devol, A. H., Saunders, J. K., McKay, C. & Rocap, G. Niche partitioning of the N cycling microbial community of an offshore oxygen deficient zone. Front. Microbiol. 8, 2384 (2017).

    PubMed  PubMed Central  Article  Google Scholar 

  127. Babbin, A. R. et al. Multiple metabolisms constrain the anaerobic nitrite budget in the Eastern Tropical South Pacific. Glob. Biogeochem. Cycles 31, 258–271 (2017).

    CAS  Article  Google Scholar 

  128. Kuypers, M. M. M. et al. Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. Proc. Natl Acad. Sci. USA 102, 6478–6483 (2005).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  129. Ward, B. B. et al. Denitrification as the dominant nitrogen loss process in the Arabian Sea. Nature 461, 78–81 (2009).

    CAS  PubMed  Article  Google Scholar 

  130. Kalvelage, T. et al. Oxygen sensitivity of anammox and coupled N-cycle processes in oxygen minimum zones. PLoS One 6, e29299 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  131. Dalsgaard, T. et al. Oxygen at nanomolar levels reversibly suppresses process rates and gene expression in anammox and denitrification in the oxygen minimum zone off northern Chile. mBio 5, e01966-14 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  132. Penn, J. L., Weber, T., Chang, B. X. & Deutsch, C. Microbial ecosystem dynamics drive fluctuating nitrogen loss in marine anoxic zones. Proc. Natl Acad. Sci. USA 116, 7220–7225 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  133. Bertagnolli, A. D. & Stewart, F. J. Microbial niches in marine oxygen minimum zones. Nat. Rev. Microbiol. 16, 723–729 (2018).

    CAS  PubMed  Article  Google Scholar 

  134. Yang, S., Gruber, N., Long, M. C. & Vogt, M. ENSO-driven variability of denitrification and suboxia in the Eastern Tropical Pacific Ocean. Glob. Biogeochem. Cycles 31, 1470–1487 (2017).

    CAS  Article  Google Scholar 

  135. Kim, J.-E., Khim, B.-K., Ikehara, M. & Lee, J. Orbital-scale denitrification changes in the Eastern Arabian Sea during the last 800 kyrs. Sci. Rep. 8, 1–8 (2018).

    Google Scholar 

  136. Tripathi, S., Behera, P. & Tiwari, M. Evolution and dynamics of the denitrification in the Arabian Sea on millennial to million-year timescale. Curr. Sci. 119, 282 (2020).

    CAS  Article  Google Scholar 

  137. Bristow, L. A. et al. N2 production rates limited by nitrite availability in the Bay of Bengal oxygen minimum zone. Nat. Geosci. 10, 24–29 (2017).

    CAS  Article  Google Scholar 

  138. Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).

    CAS  Article  Google Scholar 

  139. Karthäuser, C. et al. Small sinking particles control anammox rates in the Peruvian oxygen minimum zone. Nat. Commun. 12, 3235 (2021).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  140. Ganesh, S. et al. Size-fraction partitioning of community gene transcription and nitrogen metabolism in a marine oxygen minimum zone. ISME J. 9, 2682–2696 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  141. Hutchins, D. A. et al. Climate change microbiology — problems and perspectives. Nat. Rev. Microbiol. 17, 391–396 (2019).

    CAS  PubMed  Article  Google Scholar 

  142. Elena, S. F. & Lenski, R. E. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4, 457–469 (2003).

    CAS  PubMed  Article  Google Scholar 

  143. Walworth, N. G. et al. Mechanisms of increased Trichodesmium fitness under iron and phosphorus co-limitation in the present and future ocean. Nat. Commun. 7, 12081 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  144. Walworth, N. G., Lee, M. D., Fu, F.-X., Hutchins, D. A. & Webb, E. A. Molecular and physiological evidence of genetic assimilation to high CO2 in the marine nitrogen fixer Trichodesmium. Proc. Natl Acad. Sci. USA 113, E7367–E7374 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  145. Walworth, N. G. et al. Long-term m5C methylome dynamics parallel phenotypic adaptation in the cyanobacterium Trichodesmium. Mol. Biol. Evol. 38, 927–939 (2021).

    CAS  PubMed  Article  Google Scholar 

  146. Aranguren-Gassis, M., Kremer, C. T., Klausmeier, C. A. & Litchman, E. Nitrogen limitation inhibits marine diatom adaptation to high temperatures. Ecol. Lett. 22, 1860–1869 (2019).

    PubMed  Article  Google Scholar 

  147. O’Donnell, D. R. et al. Rapid thermal adaptation in a marine diatom reveals constraints and trade-offs. Glob. Change Biol. 24, 4554–4565 (2018).

    Article  Google Scholar 

  148. Beman, J. M. et al. Global declines in oceanic nitrification rates as a consequence of ocean acidification. Proc. Natl Acad. Sci. USA 108, 208–213 (2011).

    CAS  PubMed  Article  Google Scholar 

  149. Wannicke, N., Frey, C., Law, C. S. & Voss, M. The response of the marine nitrogen cycle to ocean acidification. Glob. Change Biol. 24, 5031–5043 (2018).

    Article  Google Scholar 

  150. Qin, W. et al. Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proc. Natl Acad. Sci. USA 111, 12504–12509 (2014).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  151. Zheng, Z.-Z. et al. Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming. Nat. Commun. 11, 3511 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  152. Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).

    CAS  PubMed  Article  Google Scholar 

  153. Wu, L. et al. A critical review on nitrous oxide production by ammonia-oxidizing archaea. Environ. Sci. Technol. 54, 9175–9190 (2020).

    CAS  PubMed  Article  Google Scholar 

  154. Bourbonnais, A. et al. N2O production and consumption from stable isotopic and concentration data in the Peruvian coastal upwelling system. Glob. Biogeochem. Cycles 31, 678–698 (2017).

    CAS  Article  Google Scholar 

  155. Casciotti, K. et al. Nitrous oxide cycling in the Eastern Tropical South Pacific as inferred from isotopic and isotopomeric data. Deep Sea Res. Part II Top. Stud. Oceanogr. 156, 155–167 (2018).

    CAS  Article  Google Scholar 

  156. Sun, X. et al. Microbial N2O consumption in and above marine N2O production hotspots. ISME J. 15, 1434–1444 (2021).

    CAS  PubMed  Article  Google Scholar 

  157. Breider, F. et al. Response of N2O production rate to ocean acidification in the western North Pacific. Nat. Clim. Chang. 9, 954–958 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  158. Battaglia, G. & Joos, F. Marine N2O emissions from nitrification and denitrification constrained by modern observations and projected in multimillennial global warming simulations. Glob. Biogeochem. Cycles 32, 92–121 (2018).

    CAS  Article  Google Scholar 

  159. Marañón, E. et al. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth. PLoS ONE 9, e99312 (2014).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  160. Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 23, 3269–3280 (2017).

    Article  Google Scholar 

  161. Qu, P., Fu, F. & Hutchins, D. A. Responses of the large centric diatom Coscinodiscus sp. to interactions between warming, elevated CO2, and nitrate availability. Limnol. Oceanogr. 63, 1407–1424 (2018).

    CAS  Article  Google Scholar 

  162. Jiang, H.-B. et al. Ocean warming alleviates iron limitation of marine nitrogen fixation. Nat. Clim. Chang. 8, 709–712 (2018).

    CAS  Article  Google Scholar 

  163. Yang, N. et al. Warming iron-limited oceans enhance nitrogen fixation and drive biogeographic specialization of the globally important cyanobacterium Crocosphaera. Front. Marine Sci. 8, 628363 (2021).

    Article  Google Scholar 

  164. Jabre, L. et al. Molecular underpinnings and biogeochemical consequences of enhanced diatom growth in a warming Southern Ocean. Proc. Natl Acad. Sci. USA 118, e2107238118 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  165. Jickells, T. et al. A reevaluation of the magnitude and impacts of anthropogenic atmospheric nitrogen inputs on the ocean. Glob. Biogeochem. Cycles 31, 289–305 (2017).

    CAS  Google Scholar 

  166. Kim, T. W., Lee, K., Najjar, R. G., Jeong, H. D. & Jeong, H. J. Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334, 505–509 (2011).

    CAS  PubMed  Article  Google Scholar 

  167. Scavia, D., Justić, D., Obenour, D. R., Craig, J. K. & Wang, L. Hypoxic volume is more responsive than hypoxic area to nutrient load reductions in the northern Gulf of Mexico — and it matters to fish and fisheries. Environ. Res. Lett. 14, 024012 (2019).

    Article  Google Scholar 

  168. Mahowald, N. M. et al. Aerosol deposition impacts on land and ocean carbon cycles. Curr. Clim. Change Rep. 3, 16–31 (2017).

    Article  Google Scholar 

  169. Kim, I.-N. et al. Increasing anthropogenic nitrogen in the North Pacific Ocean. Science 346, 1102–1106 (2014).

    CAS  PubMed  Article  Google Scholar 

  170. Zhang, C. et al. Fertilization of the northwest Pacific Ocean by east Asia air pollutants. Glob. Biogeochem. Cycles 33, 690–702 (2019).

    CAS  Article  Google Scholar 

  171. Boyd, P. W., Strzepek, R., Fu, F.-X. & Hutchins, D. A. Environmental control of open ocean phytoplankton groups: now and in the future. Limnol. Oceanogr. 55, 1353–1376 (2010).

    CAS  Article  Google Scholar 

  172. Hamilton, D. S. et al. Impact of changes to the atmospheric soluble iron deposition flux on ocean biogeochemical cycles in the Anthropocene. Glob. Biogeochem. Cycles 34, e2019GB006448 (2020).

    CAS  Article  Google Scholar 

  173. Pinedo-González, P. et al. Anthropogenic Asian aerosols provide Fe to the North Pacific Ocean. Proc. Natl Acad. Sci. USA 117, 27862–27868 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  174. Ito, A. et al. Pyrogenic iron: the missing link to high iron solubility in aerosols. Sci. Adv. 5, eaau7671 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  175. Tagliabue, A., Aumont, O. & Bopp, L. The impact of different external sources of iron on the global carbon cycle. Geophys. Res. Lett. 41, 920–926 (2014).

    CAS  Article  Google Scholar 

  176. Tang, W. et al. Widespread phytoplankton blooms triggered by 2019–2020 Australian wildfires. Nature 597, 370–375 (2021).

    CAS  PubMed  Article  Google Scholar 

  177. Ito, T., Nenes, A., Johnson, M., Meskhidze, N. & Deutsch, C. Acceleration of oxygen decline in the tropical Pacific over the past decades by aerosol pollutants. Nat. Geosci. 9, 443–447 (2016).

    CAS  Article  Google Scholar 

  178. Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).

    CAS  Article  Google Scholar 

  179. Schmidtko, S., Stramma, L. & Visbeck, M. Decline in global oceanic oxygen content during the past five decades. Nature 542, 335–339 (2017).

    CAS  PubMed  Article  Google Scholar 

  180. Santoro, A. E. et al. Nitrification and nitrous oxide production in the offshore waters of the Eastern Tropical South Pacific. Glob. Biogeochem. Cycles 35, e2020GB006716 (2021).

    CAS  Article  Google Scholar 

  181. Frey, C. et al. Regulation of nitrous oxide production in low-oxygen waters off the coast of Peru. Biogeosciences 17, 2263–2287 (2020).

    CAS  Article  Google Scholar 

  182. Qin, W. et al. Influence of oxygen availability on the activities of ammonia-oxidizing archaea. Environ. Microbiol. Rep. 9, 250–256 (2017).

    CAS  PubMed  Article  Google Scholar 

  183. Campbell, L. G., Thrash, J. C., Rabalais, N. N. & Mason, O. U. Extent of the annual Gulf of Mexico hypoxic zone influences microbial community structure. PLoS ONE 14, e0209055 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  184. Liu, X. et al. Simulated global coastal ecosystem responses to a half-century increase in river nitrogen loads. Geophys. Res. Lett. 48, e2021GL094367 (2021).

    CAS  Google Scholar 

  185. Mayali, X. NanoSIMS: microscale quantification of biogeochemical activity with large-scale impacts. Annu. Rev. Mar. Sci. 12, 449–467 (2020).

    Article  Google Scholar 

  186. Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).

    CAS  PubMed  Article  Google Scholar 

  187. Ghaderiardakani, F. et al. Effects of green seaweed extract on Arabidopsis early development suggest roles for hormone signalling in plant responses to algal fertilisers. Sci. Rep. 9, 1983 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  188. Mehta, M. P. & Baross, J. A. Nitrogen fixation at 92°C by a hydrothermal vent Archaeon. Science 314, 1783–1786 (2006).

    CAS  PubMed  Article  Google Scholar 

  189. Watanabe, Y., Aoki, W. & Ueda, M. Sustainable biological ammonia production towards a carbon-free society. Sustainability 13, 9496 (2021).

    CAS  Article  Google Scholar 

  190. Kim, J., Stekoll, M. & Yarish, C. Opportunities, challenges and future directions of open-water seaweed aquaculture in the United States. Phycologia 58, 446–461 (2019).

    Article  Google Scholar 

  191. Vijn, S. et al. Key considerations for the use of seaweed to reduce enteric methane emissions from cattle. Front. Vet. Sci. 7, 1135 (2020).

    Article  Google Scholar 

  192. Shin, B., Bociu, I., Kolton, M., Huettel, M. & Kostka, J. E. Succession of microbial populations and nitrogen-fixation associated with the biodegradation of sediment-oil-agglomerates buried in a Florida sandy beach. Sci. Rep. 9, 1–11 (2019).

    Article  CAS  Google Scholar 

  193. Karthikeyan, S. et al. “Candidatus Macondimonas diazotrophica”, a novel gammaproteobacterial genus dominating crude-oil-contaminated coastal sediments. ISME J. 13, 2129–2134 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  194. Pritchard, P., Mueller, J., Rogers, J., Kremer, F. & Glaser, J. Oil spill bioremediation: experiences, lessons and results from the Exxon Valdez oil spill in Alaska. Biodegradation 3, 315–335 (1992).

    CAS  Article  Google Scholar 

  195. Yoon, J.-E. et al. Reviews and syntheses: ocean iron fertilization experiments — past, present, and future looking to a future Korean iron fertilization experiment in the Southern Ocean (KIFES) project. Biogeosciences 15, 5847–5889 (2018).

    CAS  Article  Google Scholar 

  196. Williamson, P. et al. Ocean fertilization for geoengineering: a review of effectiveness, environmental impacts and emerging governance. Process. Saf. Environ. Prot. 90, 475–488 (2012).

    CAS  Article  Google Scholar 

  197. Boyd, P. & Vivian, C. Should we fertilize oceans or seed clouds? No one knows. Nature 570, 155–157 (2019).

    CAS  PubMed  Article  Google Scholar 

  198. Gattuso, J.-P., Williamson, P., Duarte, C. M. & Magnan, A. K. The potential for ocean-based climate action: negative emissions technologies and beyond. Front. Clim. 2, 37 (2021).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank J. Brown and USC Wrigley Institute for assistance with graphics. Grant support was provided by US National Science Foundation grants OCE 1638804 and OCE 1851222, and a USC Sea Grant-administered California Proposition 84 grant to D.A.H., and sustained NSF support to D.G.C.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to David A. Hutchins or Douglas G. Capone.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Microbiology thanks M. Kuypers, who co-reviewed with K. Kitzinger; L. Riemann; and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Haber–Bosch process

The industrial chemical process whereby ammonia for agricultural fertilizer is produced directly from hydrogen and nitrogen gas.

Cyanate

An anion consisting of a C atom tripled-bonded to an N atom and single-bonded to an O atom in a linear configuration.

Diazotrophs

Organisms that are capable of fixing atmospheric N2 gas into bioavailable ammonia.

Cosmopolitan

A descriptor for a group of organisms that is universally distributed across a range of environments.

Coccolithophorids

A group of unicellular, photosynthetic phytoplankton in the division Haptophyta, with cells that are covered by overlapping calcium carbonate plates or ‘coccoliths’.

Combined nitrogen

Inorganic forms of soluble nitrogen that are covalently bonded to other elements (typically O or H), including the highly bioavailable compounds nitrate, nitrite and ammonia.

Tow-Fish

An oceanographic method whereby a pumped seawater sampling intake system is towed behind a research vessel at a controlled depth and speed.

Anammox

Anaerobic ammonium oxidation by chemoautotrophic bacteria of the phylum Planctomycetes, whereby nitrite and ammonium react directly to produce N2 gas and water.

Autochthonous organic production

Primary production that occurs locally, within the environment being considered.

El Niño Southern Oscillation cycle

La Niña and El Niño are alternate phases of the natural global climate cycle known as the El Niño Southern Oscillation, with contrasting global wind, precipitation and temperature trends.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hutchins, D.A., Capone, D.G. The marine nitrogen cycle: new developments and global change. Nat Rev Microbiol 20, 401–414 (2022). https://doi.org/10.1038/s41579-022-00687-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41579-022-00687-z

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing