Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing polymers for advanced battery chemistries

Abstract

Electrochemical energy storage devices are becoming increasingly important to our global society, and polymer materials are key components of these devices. As the demand for high-energy density devices increases, innovative new materials that build on the fundamental understanding of physical phenomena and structure–property relationships will be required to enable high-capacity next-generation battery chemistries. In this Review, we discuss core polymer science principles that are used to facilitate progress in battery materials development. Specifically, we discuss the design of polymeric materials for desired mechanical properties, increased ionic and electronic conductivity and specific chemical interactions. We also discuss how polymer materials have been designed to create stable artificial interfaces and improve battery safety. The focus is on these design principles applied to advanced silicon, lithium-metal and sulfur battery chemistries.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Polymers in commercial Li-ion batteries.
Fig. 2: Advanced battery chemistries and related challenges.
Fig. 3: Mechanical properties of polymers.
Fig. 4: Ion transport in polymer electrolytes.
Fig. 5: Electronic conductivity in polymers.
Fig. 6: Chemical interactions between S or Si and polymer binders.
Fig. 7: Solid electrolyte and Li-metal interface in Li-ion batteries.
Fig. 8: Polymer materials for improved battery safety.

References

  1. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2017).

    Google Scholar 

  2. Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Chang. 5, 329–332 (2015).

    Google Scholar 

  3. Arora, P. & Zhang, Z. J. Battery separators. Chem. Rev. 104, 4419–4462 (2004).

    CAS  Google Scholar 

  4. Chen, H. et al. Exploring chemical, mechanical, and electrical functionalities of binders for advanced energy-storage devices. Chem. Rev. 118, 8936–8982 (2018).

    CAS  Google Scholar 

  5. Obrovac, M. N. & Christensen, L. Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid State Lett. 7, A93–A96 (2004).

    CAS  Google Scholar 

  6. Obrovac, M. N. & Krause, L. J. Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103–A108 (2007).

    CAS  Google Scholar 

  7. Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 100, 1518–1534 (2012).

    CAS  Google Scholar 

  8. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater. 1, 16013 (2016).

    CAS  Google Scholar 

  9. Beaulieu, L. Y., Eberman, K. W., Turner, R. L., Krause, L. J. & Dahn, J. R. Colossal reversible volume changes in lithium alloys. Electrochem. Solid State Lett. 4, A137–A140 (2001).

    CAS  Google Scholar 

  10. Liu, X. H. et al. In situ atomic-scale imaging of electrochemical lithiation in silicon. Nat. Nanotechnol. 7, 749–756 (2012).

    Google Scholar 

  11. Lee, S. W., McDowell, M. T., Berla, L. A., Nix, W. D. & Cui, Y. Fracture of crystalline silicon nanopillars during electrochemical lithium insertion. Proc. Natl Acad. Sci. USA 109, 4080–4085 (2012).

    CAS  Google Scholar 

  12. Liu, X. H. et al. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522–1531 (2012).

    CAS  Google Scholar 

  13. Saint, J. et al. Towards a fundamental understanding of the improved electrochemical performance of silicon–carbon composites. Adv. Funct. Mater. 17, 1765–1774 (2007).

    CAS  Google Scholar 

  14. Michan, A. L. et al. Solid electrolyte interphase growth and capacity loss in silicon electrodes. J. Am. Chem. Soc. 138, 7918–7931 (2016).

    CAS  Google Scholar 

  15. Ryu, J. H., Kim, J. W., Sung, Y.-E. & Oh, S. M. Failure modes of silicon powder negative electrode in lithium secondary batteries. Electrochem. Solid State Lett. 7, A306–A309 (2004).

    CAS  Google Scholar 

  16. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31–35 (2008).

    CAS  Google Scholar 

  17. Liu, N. et al. A pomegranate-inspired nanoscale design for large-volume-change lithium battery anodes. Nat. Nanotechnol. 9, 187–192 (2014).

    CAS  Google Scholar 

  18. Magasinski, A. et al. High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353–358 (2010).

    CAS  Google Scholar 

  19. Beattie, S. D., Larcher, D., Morcrette, M., Simon, B. & Tarascon, J. M. Si electrodes for Li-ion batteries — a new way to look at an old problem. J. Electrochem. Soc. 155, A158–A163 (2008).

    CAS  Google Scholar 

  20. Wu, M. et al. In situ formed Si nanoparticle network with micron-sized Si particles for lithium-ion battery anodes. Nano Lett. 13, 5397–5402 (2013).

    CAS  Google Scholar 

  21. Li, Y. et al. Growth of conformal graphene cages on micrometre-sized silicon particles as stable battery anodes. Nat. Energy 1, 15029 (2016).

    CAS  Google Scholar 

  22. Wang, C. et al. Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042–1048 (2013).

    CAS  Google Scholar 

  23. Chen, Z. et al. High-areal-capacity silicon electrodes with low-cost silicon particles based on spatial control of self-healing binder. Adv. Energy Mater. 5, 1401826 (2015).

    Google Scholar 

  24. Choi, S., Kwon, T.-W., Coskun, A. & Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 357, 279–283 (2017).

    CAS  Google Scholar 

  25. Xu, W. et al. Lithium metal anodes for rechargeable batteries. Energy Environ. Sci. 7, 513–537 (2014).

    CAS  Google Scholar 

  26. Aurbach, D. & Cohen, Y. Morphological studies of Li deposition processes in LiAsF6/PC solutions by in situ atomic force microscopy. J. Electrochem. Soc. 144, 3355–3360 (1997).

    CAS  Google Scholar 

  27. Aurbach, D., Zinigrad, E., Cohen, Y. & Teller, H. A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions. Solid State Ion. 148, 405–416 (2002).

    CAS  Google Scholar 

  28. Li, Z., Huang, J., Yann Liaw, B., Metzler, V. & Zhang, J. A review of lithium deposition in lithium-ion and lithium metal secondary batteries. J. Power Sources 254, 168–182 (2014).

    CAS  Google Scholar 

  29. Lu, D. et al. Failure mechanism for fast-charged lithium metal batteries with liquid electrolytes. Adv. Energy Mater. 5, 1400993 (2015).

    Google Scholar 

  30. Finegan, D. P. et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun. 6, 6924 (2015).

    CAS  Google Scholar 

  31. Liu, K., Liu, Y., Lin, D., Pei, A. & Cui, Y. Materials for lithium-ion battery safety. Sci. Adv. 4, eaas9820 (2018).

    Google Scholar 

  32. Crowther, O. & West, A. C. Effect of electrolyte composition on lithium dendrite growth. J. Electrochem. Soc. 155, A806–A811 (2008).

    CAS  Google Scholar 

  33. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Google Scholar 

  34. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    CAS  Google Scholar 

  35. Chen, S. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2, 1548–1558 (2018).

    CAS  Google Scholar 

  36. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156–1161 (2018).

    CAS  Google Scholar 

  37. Fan, X. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 4, 174–185 (2018).

    CAS  Google Scholar 

  38. Lu, Y., Tu, Z. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    CAS  Google Scholar 

  39. Ding, F. et al. Dendrite-free lithium deposition via self-healing electrostatic shield mechanism. J. Am. Chem. Soc. 135, 4450–4456 (2013).

    CAS  Google Scholar 

  40. Shi, F. et al. Strong texturing of lithium metal in batteries. Proc. Natl Acad. Sci. USA 114, 12138–12143 (2017).

    CAS  Google Scholar 

  41. Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 19–29 (2012).

    CAS  Google Scholar 

  42. Pang, Q., Liang, X., Kwok, C. Y. & Nazar, L. F. Advances in lithium–sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 1, 16132 (2016).

    CAS  Google Scholar 

  43. Zhang, X. et al. Advances in lithium–sulfur batteries. Mater. Sci. Eng. R. Rep. 121, 1–29 (2017).

    Google Scholar 

  44. Sun, Y., Liu, N. & Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 1, 16071 (2016).

    CAS  Google Scholar 

  45. Sperling, L. H. Introduction to Physical Polymer Science 557–612 (John Wiley & Sons, 2005).

  46. Callister, W. D. Jr & Rethwisch, D. G. Fundamentals of Materials Science and Engineering: an Integrated Approach 147–196 (John Wiley & Sons, 2012).

  47. Zhang, L., Zhang, L., Chai, L., Xue, P. & Hao, W. A coordinatively cross-linked polymeric network as a functional binder for high-performance silicon submicro-particle anodes in lithium-ion batteries. J. Mater. Chem. A 2, 19036–19045 (2014).

    CAS  Google Scholar 

  48. Yoon, J., Oh, D. X., Jo, C., Lee, J. & Hwang, D. S. Improvement of desolvation and resilience of alginate binders for Si-based anodes in a lithium ion battery by calcium-mediated cross-linking. Phys. Chem. Chem. Phys. 16, 25628–25635 (2014).

    CAS  Google Scholar 

  49. Ying, H., Zhang, Y. & Cheng, J. Dynamic urea bond for the design of reversible and self-healing polymers. Nat. Commun. 5, 3218 (2014).

    Google Scholar 

  50. Chen, Z., Christensen, L. & Dahn, J. R. Large-volume-change electrodes for Li-ion batteries of amorphous alloy particles held by elastomeric tethers. Electrochem. Commun. 5, 919–923 (2003).

    CAS  Google Scholar 

  51. Mazouzi, D. et al. Critical roles of binders and formulation at multiscales of silicon-based composite electrodes. J. Power Sources 280, 533–549 (2015).

    CAS  Google Scholar 

  52. Shi, Y., Zhou, X. & Yu, G. Material and structural design of novel binder systems for high-energy, high-power lithium-ion batteries. Acc. Chem. Res. 50, 2642–2652 (2017).

    CAS  Google Scholar 

  53. Kwon, T.-W., Choi, J. W. & Coskun, A. The emerging era of supramolecular polymeric binders in silicon anodes. Chem. Soc. Rev. 47, 2145–2164 (2018).

    CAS  Google Scholar 

  54. Kim, J. S. et al. Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries. J. Power Sources 244, 521–526 (2013).

    CAS  Google Scholar 

  55. Sperling, L. H. Introduction to Physical Polymer Science 427–505 (John Wiley & Sons, 2005).

  56. Chen, Z., Christensen, L. & Dahn, J. R. Comparison of PVDF and PVDF-TFE-P as binders for electrode materials showing large volume changes in lithium-ion batteries. J. Electrochem. Soc. 150, A1073–A1078 (2003).

    CAS  Google Scholar 

  57. Liu, W.-R., Yang, M.-H., Wu, H.-C., Chiao, S. M. & Wu, N.-L. Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder. Electrochem. Solid State Lett. 8, A100–A103 (2005).

    CAS  Google Scholar 

  58. Kovalenko, I. et al. A major constituent of brown algae for use in high-capacity Li-ion batteries. Science 334, 75–79 (2011).

    CAS  Google Scholar 

  59. Magasinski, A. et al. Toward efficient binders for Li-ion battery Si-based anodes: polyacrylic acid. ACS Appl. Mater. Interfaces 2, 3004–3010 (2010).

    CAS  Google Scholar 

  60. Li, J., Lewis, R. B. & Dahn, J. R. Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries. Electrochem. Solid State Lett. 10, A17–A20 (2007).

    CAS  Google Scholar 

  61. Koo, B. et al. A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries. Angew. Chem. Int. Ed. 51, 8762–8767 (2012).

    CAS  Google Scholar 

  62. Song, J. et al. Interpenetrated gel polymer binder for high-performance silicon anodes in lithium-ion batteries. Adv. Funct. Mater. 24, 5904–5910 (2014).

    CAS  Google Scholar 

  63. Wei, L. & Hou, Z. High performance polymer binders inspired by chemical finishing of textiles for silicon anodes in lithium ion batteries. J. Mater. Chem. A 5, 22156–22162 (2017).

    CAS  Google Scholar 

  64. Zhu, X. et al. A highly stretchable cross-linked polyacrylamide hydrogel as an effective binder for silicon and sulfur electrodes toward durable lithium-ion storage. Adv. Funct. Mater. 28, 1705015 (2018).

    Google Scholar 

  65. Kwon, T.-W. et al. Dynamic cross-linking of polymeric binders based on host-guest interactions for silicon anodes in lithium ion batteries. ACS Nano 9, 11317–11324 (2015).

    CAS  Google Scholar 

  66. Kwon, T.-W. et al. Systematic molecular-level design of binders incorporating Meldrum’s acid for silicon anodes in lithium rechargeable batteries. Adv. Mater. 26, 7979–7985 (2014).

    CAS  Google Scholar 

  67. Xu, Z. et al. Silicon microparticle anodes with self-healing multiple network binder. Joule 2, 950–961 (2018).

    CAS  Google Scholar 

  68. Lopez, J. et al. The effects of cross-linking in a supramolecular binder on cycle life in silicon microparticle anodes. ACS Appl. Mater. Interfaces 8, 2318–2324 (2016).

    CAS  Google Scholar 

  69. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396–A404 (2005).

    CAS  Google Scholar 

  70. Stone, G. M. et al. Resolution of the modulus versus adhesion dilemma in solid polymer electrolytes for rechargeable lithium metal batteries. J. Electrochem. Soc. 159, A222–A227 (2012).

    CAS  Google Scholar 

  71. Bouchet, R. et al. Single-ion BAB triblock copolymers as highly efficient electrolytes for lithium-metal batteries. Nat. Mater. 12, 452–457 (2013).

    CAS  Google Scholar 

  72. Gurevitch, I. et al. Nanocomposites of titanium dioxide and polystyrene-poly(ethylene oxide) block copolymer as solid-state electrolytes for lithium metal batteries. J. Electrochem. Soc. 160, A1611–A1617 (2013).

    CAS  Google Scholar 

  73. Tung, S.-O., Ho, S., Yang, M., Zhang, R. & Kotov, N. A. A dendrite-suppressing composite ion conductor from aramid nanofibres. Nat. Commun. 6, 6152 (2015).

    CAS  Google Scholar 

  74. Choudhury, S., Mangal, R., Agrawal, A. & Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 6, 10101 (2015).

    CAS  Google Scholar 

  75. Khurana, R., Schaefer, J. L., Archer, L. A. & Coates, G. W. Suppression of lithium dendrite growth using cross-linked polyethylene/poly(ethylene oxide) electrolytes: a new approach for practical lithium-metal polymer batteries. J. Am. Chem. Soc. 136, 7395–7402 (2014).

    CAS  Google Scholar 

  76. Lu, Q. et al. Dendrite-free, high-rate, long-life lithium metal batteries with a 3D cross-linked network polymer electrolyte. Adv. Mater. 29, 1604460 (2017).

    Google Scholar 

  77. Pan, Q., Smith, D. M., Qi, H., Wang, S. & Li, C. Y. Hybrid electrolytes with controlled network structures for lithium metal batteries. Adv. Mater. 27, 5995–6001 (2015).

    CAS  Google Scholar 

  78. Tikekar, M. D., Archer, L. A. & Koch, D. L. Stabilizing electrodeposition in elastic solid electrolytes containing immobilized anions. Sci. Adv. 2, e1600320 (2016).

    Google Scholar 

  79. Choudhury, S. et al. Confining electrodeposition of metals in structured electrolytes. Proc. Natl Acad. Sci. USA 115, 6620–6625 (2018).

    CAS  Google Scholar 

  80. Lin, D., Liu, Y. & Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 12, 194–206 (2017).

    CAS  Google Scholar 

  81. Zheng, G. et al. High-performance lithium metal negative electrode with a soft and flowable polymer coating. ACS Energy Lett. 1, 1247–1255 (2016).

    CAS  Google Scholar 

  82. Liu, K. et al. Lithium metal anodes with an adaptive ‘solid-liquid’ interfacial protective layer. J. Am. Chem. Soc. 139, 4815–4820 (2017).

    CAS  Google Scholar 

  83. Li, N.-W. et al. A flexible solid electrolyte interphase layer for long-life lithium metal anodes. Angew. Chem. Int. Ed. 57, 1505–1509 (2018).

    CAS  Google Scholar 

  84. Liu, Y. et al. Transforming from planar to three-dimensional lithium with flowable interphase for solid lithium metal batteries. Sci. Adv. 3, eaao0713 (2017).

    Google Scholar 

  85. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Google Scholar 

  86. Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).

    CAS  Google Scholar 

  87. Hallinan, D. T. Jr & Balsara, N. P. Polymer electrolytes. Annu. Rev. Mater. Res. 43, 503–525 (2013).

    CAS  Google Scholar 

  88. Long, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016).

    CAS  Google Scholar 

  89. Wright, P. V. Electrical conductivity in ionic complexes of poly (ethylene oxide). Polym. Int. 7, 319–327 (1975).

    CAS  Google Scholar 

  90. Vashishta, P., Mundy, J. N. & Shenoy, G. K. (eds) Fast Ion Transport in Solids 87–107 (North-Holland, 1979).

  91. Xue, Z., He, D. & Xie, X. Poly (ethylene oxide)-based electrolytes for lithium-ion batteries. J. Mater. Chem. A 3, 19218–19253 (2015).

    CAS  Google Scholar 

  92. Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).

    CAS  Google Scholar 

  93. Vogel, H. The temperature dependence law of the viscosity of fluids. Phys. Z. 22, 645–646 (1921).

    CAS  Google Scholar 

  94. Fulcher, G. S. Analysis of recent measurements of the viscosity of glasses. J. Am. Ceram. Soc. 8, 339–355 (1925).

    CAS  Google Scholar 

  95. Tammann, G. & Hesse, W. The dependancy of viscosity on temperature in hypothermic liquids. Z. Anorg. Allg. Chem. 156, 245–257 (1926).

    CAS  Google Scholar 

  96. Ratner, M. A. & Shriver, D. F. Ion transport in solvent-free polymers. Chem. Rev. 88, 109–124 (1988).

    CAS  Google Scholar 

  97. Adam, G. & Gibbs, J. H. On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J. Chem. Phys. 43, 139–146 (1965).

    CAS  Google Scholar 

  98. Cohen, M. H. & Turnbull, D. Molecular transport in liquids and glasses. J. Chem. Phys. 31, 1164–1169 (1959).

    CAS  Google Scholar 

  99. Diederichsen, K. M., Buss, H. G. & McCloskey, B. D. The compensation effect in the Vogel–Tammann–Fulcher (VTF) equation for polymer-based electrolytes. Macromolecules 50, 3831–3840 (2017).

    CAS  Google Scholar 

  100. Diederichsen, K. M., McShane, E. J. & McCloskey, B. D. Promising routes to a high Li+ transference number electrolyte for lithium ion batteries. ACS Energy Lett. 2, 2563–2575 (2017).

    CAS  Google Scholar 

  101. Gadjourova, Z., Andreev, Y. G., Tunstall, D. P. & Bruce, P. G. Ionic conductivity in crystalline polymer electrolytes. Nature 412, 520–523 (2001).

    CAS  Google Scholar 

  102. Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    CAS  Google Scholar 

  103. Sun, J., Stone, G. M., Balsara, N. P. & Zuckermann, R. N. Structure–conductivity relationship for peptoid-based PEO–mimetic polymer electrolytes. Macromolecules 45, 5151–5156 (2012).

    CAS  Google Scholar 

  104. Nishimoto, A., Agehara, K., Furuya, N., Watanabe, T. & Watanabe, M. High ionic conductivity of polyether-based network polymer electrolytes with hyperbranched side chains. Macromolecules 32, 1541–1548 (1999).

    CAS  Google Scholar 

  105. Hawker, C. J., Chu, F., Pomery, P. J. & Hill, D. J. T. Hyperbranched poly(ethylene glycol)s: a new class of ion-conducting materials. Macromolecules 29, 3831–3838 (1996).

    CAS  Google Scholar 

  106. Bates, C. M., Chang, A. B., Momčilović, N., Jones, S. C. & Grubbs, R. H. ABA triblock brush polymers: synthesis, self-assembly, conductivity, and rheological properties. Macromolecules 48, 4967–4973 (2015).

    CAS  Google Scholar 

  107. Wang, Y. et al. Solid state ionics. Solid State Ion. 262, 782–784 (2014).

    CAS  Google Scholar 

  108. Wei, X. & Shriver, D. F. Highly conductive polymer electrolytes containing rigid polymers. Chem. Mater. 10, 2307–2308 (1998).

    CAS  Google Scholar 

  109. Wang, Y. et al. Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Phys. Rev. Lett. 108, 088303 (2012).

    Google Scholar 

  110. Wang, Y. et al. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer 55, 4067–4076 (2014).

    CAS  Google Scholar 

  111. Kim, C. S. & Oh, S. M. Importance of donor number in determining solvating ability of polymers and transport properties in gel-type polymer electrolytes. Electrochim. Acta 45, 2101–2109 (2000).

    CAS  Google Scholar 

  112. Tominaga, Y. & Yamazaki, K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem. Commun. 50, 4448–4450 (2014).

    CAS  Google Scholar 

  113. Kimura, K., Motomatsu, J. & Tominaga, Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J. Phys. Chem. C 120, 12385–12391 (2016).

    CAS  Google Scholar 

  114. Mackanic, D. G. et al. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte. Adv. Energy Mater. 6, 1800703 (2018).

    Google Scholar 

  115. Pesko, D. M. et al. Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes. Solid State Ion. 289, 118–124 (2016).

    CAS  Google Scholar 

  116. Devaux, D. et al. Crosslinked perfluoropolyether solid electrolytes for lithium ion transport. Solid State Ion. 310, 71–80 (2017).

    CAS  Google Scholar 

  117. Wong, D. H. C. et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 111, 3327–3331 (2014).

    CAS  Google Scholar 

  118. Blonsky, P. M., Shriver, D. F., Austin, P. & Allcock, H. R. Polyphosphazene solid electrolytes. J. Am. Chem. Soc. 106, 6854–6855 (1984).

    CAS  Google Scholar 

  119. Savoie, B. M., Webb, M. A. & Miller, T. F. III. Enhancing cation diffusion and suppressing anion diffusion via Lewis-acidic polymer electrolytes. J. Phys. Chem. Lett. 8, 641–646 (2017).

    CAS  Google Scholar 

  120. Webb, M. A. et al. Systematic computational and experimental investigation of lithium-ion transport mechanisms in polyester-based polymer electrolytes. ACS Cent. Sci. 1, 198–205 (2015).

    CAS  Google Scholar 

  121. Pesko, D. M. et al. Universal relationship between conductivity and solvation-site connectivity in ether-based polymer electrolytes. Macromolecules 49, 5244–5255 (2016).

    CAS  Google Scholar 

  122. Porcarelli, L. et al. Single-ion conducting polymer electrolytes for lithium metal polymer batteries that operate at ambient temperature. ACS Energy Lett. 1, 678–682 (2016).

    CAS  Google Scholar 

  123. Villaluenga, I. et al. Nanostructured single-ion-conducting hybrid electrolytes based on salty nanoparticles and block copolymers. Macromolecules 50, 1998–2005 (2017).

    CAS  Google Scholar 

  124. Ryu, S.-W. et al. Effect of counter ion placement on conductivity in single-ion conducting block copolymer electrolytes. J. Electrochem. Soc. 152, A158–A163 (2005).

    CAS  Google Scholar 

  125. Xia, Y., Fujieda, T., Tatsumi, K., Prosini, P. P. & Sakai, T. Thermal and electrochemical stability of cathode materials in solid polymer electrolyte. J. Power Sources 92, 234–243 (2001).

    CAS  Google Scholar 

  126. Zeng, X. et al. Kinetic study of parasitic reactions in lithium-ion batteries: a case study on LiNi0.6Mn0.2Co0.2O2. ACS Appl. Mater. Interfaces 8, 3446–3451 (2016).

    CAS  Google Scholar 

  127. Peljo, P. & Girault, H. H. Electrochemical potential window of battery electrolytes: the HOMO–LUMO misconception. Energy Environ. Sci. 11, 2306–2309 (2018).

    CAS  Google Scholar 

  128. Hoffmann, R., Janiak, C. & Kollmar, C. A chemical approach to the orbitals of organic polymers. Macromolecules 24, 3725–3746 (1991).

    CAS  Google Scholar 

  129. Heeger, A. J. Semiconducting polymers: the third generation. Chem. Soc. Rev. 39, 2354–2371 (2010).

    CAS  Google Scholar 

  130. Heeger, A. J., Kivelson, S., Schrieffer, J. R. & Su, W. P. Solitons in conducting polymers. Rev. Mod. Phys. 60, 781–850 (1988).

    CAS  Google Scholar 

  131. Mei, J. & Bao, Z. Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 26, 604–615 (2013).

    Google Scholar 

  132. Wu, M. et al. Toward an ideal polymer binder design for high-capacity battery anodes. J. Am. Chem. Soc. 135, 12048–12056 (2013).

    CAS  Google Scholar 

  133. Park, S.-J. et al. Side-chain conducting and phase-separated polymeric binders for high-performance silicon anodes in lithium-ion batteries. J. Am. Chem. Soc. 137, 2565–2571 (2015).

    CAS  Google Scholar 

  134. Wu, M. et al. Manipulating the polarity of conductive polymer binders for Si-based anodes in lithium-ion batteries. J. Mater. Chem. A 3, 3651–3658 (2015).

    CAS  Google Scholar 

  135. Liu, G. et al. Polymers with tailored electronic structure for high capacity lithium battery electrodes. Adv. Mater. 23, 4679–4683 (2011).

    CAS  Google Scholar 

  136. Kim, S. M., Kim, M. H., Choi, S. Y., Lee, J. G. & Jang, J. Poly(phenanthrenequinone) as a conductive binder for nano-sized silicon negative electrodes. Energy Environ. Sci. 8, 1538–1543 (2015).

    CAS  Google Scholar 

  137. Song, C. K., Eckstein, B. J., Tam, T. L. D., Trahey, L. & Marks, T. J. Conjugated polymer energy level shifts in lithium-ion battery electrolytes. ACS Appl. Mater. Interfaces 6, 19347–19354 (2014).

    CAS  Google Scholar 

  138. Zhao, H. et al. Mussel-inspired conductive polymer binder for Si-alloy anode in lithium-ion batteries. ACS Appl. Mater. Interfaces 10, 5440–5446 (2018).

    CAS  Google Scholar 

  139. Higgins, T. M. et al. A commercial conducting polymer as both binder and conductive additive for silicon nanoparticle-based lithium-ion battery negative electrodes. ACS Nano 10, 3702–3713 (2016).

    CAS  Google Scholar 

  140. Manthiram, A., Fu, Y. & Su, Y.-S. Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125–1134 (2012).

    Google Scholar 

  141. Seh, Z. W., Sun, Y., Zhang, Q. & Cui, Y. Designing high-energy lithium–sulfur batteries. Chem. Soc. Rev. 45, 5605–5634 (2016).

    CAS  Google Scholar 

  142. Zhou, W., Yu, Y., Chen, H., DiSalvo, F. J. & Abruña, H. D. Yolk–shell structure of polyaniline-coated sulfur for lithium–sulfur batteries. J. Am. Chem. Soc. 135, 16736–16743 (2013).

    CAS  Google Scholar 

  143. Liang, X. et al. Split-half-tubular polypyrrole@sulfur@polypyrrole composite with a novel three-layer-3D structure as cathode for lithium/sulfur batteries. Nano Energy 11, 587–599 (2015).

    CAS  Google Scholar 

  144. Li, W. et al. Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance. Nano Lett. 13, 5534–5540 (2013).

    CAS  Google Scholar 

  145. Yang, Y. et al. Improving the performance of lithium–sulfur batteries by conductive polymer coating. ACS Nano 5, 9187–9193 (2011).

    CAS  Google Scholar 

  146. Tsao, Y. et al. Enhanced cycling stability of sulfur electrodes through effective binding of pyridine-functionalized polymer. ACS Energy Lett. 2, 2454–2462 (2017).

    CAS  Google Scholar 

  147. Wang, Z., Chen, Y., Battaglia, V. & Liu, G. Improving the performance of lithium–sulfur batteries using conductive polymer and micrometric sulfur powder. J. Mater. Res. 29, 1027–1033 (2014).

    CAS  Google Scholar 

  148. Song, J. et al. Nitrogen-doped mesoporous carbon promoted chemical adsorption of sulfur and fabrication of high-areal-capacity sulfur cathode with exceptional cycling stability for lithium-sulfur batteries. Adv. Funct. Mater. 24, 1243–1250 (2013).

    Google Scholar 

  149. Song, J. et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes. Angew. Chem. Int. Ed. 127, 4399–4403 (2015).

    Google Scholar 

  150. Pang, Q. et al. A nitrogen and sulfur dual-doped carbon derived from polyrhodanine@cellulose for advanced lithium-sulfur batteries. Adv. Mater. 27, 6021–6028 (2015).

    CAS  Google Scholar 

  151. Seh, Z. W. et al. Stable cycling of lithium sulfide cathodes through strong affinity with a bifunctional binder. Chem. Sci. 4, 3673–3677 (2013).

    CAS  Google Scholar 

  152. Ma, L. et al. Tethered molecular sorbents: enabling metal-sulfur battery cathodes. Adv. Energy Mater. 4, 1400390 (2014).

    Google Scholar 

  153. Park, K. et al. Trapping lithium polysulfides of a Li–S battery by forming lithium bonds in a polymer matrix. Energy Environ. Sci. 8, 2389–2395 (2015).

    CAS  Google Scholar 

  154. Xiao, L. et al. A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium-sulfur batteries with long cycle life. Adv. Mater. 24, 1176–1181 (2012).

    CAS  Google Scholar 

  155. Oschmann, B. et al. Copolymerization of polythiophene and sulfur to improve the electrochemical performance in lithium–sulfur batteries. Chem. Mater. 27, 7011–7017 (2015).

    CAS  Google Scholar 

  156. Li, L. et al. Molecular understanding of polyelectrolyte binders that actively regulate ion transport in sulfur cathodes. Nat. Commun. 8, 2277 (2017).

    Google Scholar 

  157. Bucur, C. B., Muldoon, J. & Lita, A. A layer-by-layer supramolecular structure for a sulfur cathode. Energy Environ. Sci. 9, 992–998 (2016).

    CAS  Google Scholar 

  158. Huang, J.-Q. et al. Ionic shield for polysulfides towards highly-stable lithium–sulfur batteries. Energy Environ. Sci. 7, 347–353 (2014).

    CAS  Google Scholar 

  159. Kim, J. H., Choi, J., Seo, J., Kwon, J. & Paik, U. Two-dimensional Nafion nanoweb anion-shield for improved electrochemical performances of lithium–sulfur batteries. J. Mater. Chem. A 4, 11203–11206 (2016).

    CAS  Google Scholar 

  160. Je, S. H. et al. Rational sulfur cathode design for lithium–sulfur batteries: sulfur-embedded benzoxazine polymers. ACS Energy Lett. 1, 566–572 (2016).

    CAS  Google Scholar 

  161. Liu, J. et al. Molecularly imprinted polymer enables high-efficiency recognition and trapping lithium polysulfides for stable lithium sulfur battery. Nano Lett. 17, 5064–5070 (2017).

    CAS  Google Scholar 

  162. Erk, C., Brezesinski, T., Sommer, H., Schneider, R. & Janek, J. Toward silicon anodes for next-generation lithium ion batteries: a comparative performance study of various polymer binders and silicon nanopowders. ACS Appl. Mater. Interfaces 5, 7299–7307 (2013).

    CAS  Google Scholar 

  163. Lestriez, B., Bahri, S., Sandu, I., Roué, L. & Guyomard, D. On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries. Electrochem. Commun. 9, 2801–2806 (2007).

    CAS  Google Scholar 

  164. Bridel, J. S., Azaïs, T., Morcrette, M., Tarascon, J. M. & Larcher, D. Key parameters governing the reversibility of Si/Carbon/CMC electrodes for Li-ion batteries. Chem. Mater. 22, 1229–1241 (2010).

    CAS  Google Scholar 

  165. Vogl, U. S. et al. Mechanism of interactions between CMC binder and Si single crystal facets. Langmuir 30, 10299–10307 (2014).

    CAS  Google Scholar 

  166. Ryou, M.-H. et al. Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries. Adv. Mater. 25, 1571–1576 (2013).

    CAS  Google Scholar 

  167. Jeong, Y. K. et al. Hyperbranched β-cyclodextrin polymer as an effective multidimensional binder for silicon anodes in lithium rechargeable batteries. Nano Lett. 14, 864–870 (2014).

    CAS  Google Scholar 

  168. Jeong, Y. K., Kwon, T., Lee, I., Kim, T. S. & Coskun, A. Millipede-inspired structural design principle for high performance polysaccharide binders in silicon anodes. Energy Environ. Sci. 8, 1224–1230 (2015).

    CAS  Google Scholar 

  169. Han, Z.-J. et al. High-capacity Si–graphite composite electrodes with a self-formed porous structure by a partially neutralized polyacrylate for Li-ion batteries. Energy Environ. Sci. 5, 9014–9020 (2012).

    CAS  Google Scholar 

  170. Nguyen, C. C., Yoon, T., Seo, D. M., Guduru, P. & Lucht, B. L. Systematic investigation of binders for silicon anodes: interactions of binder with silicon particles and electrolytes and effects of binders on solid electrolyte interphase formation. ACS Appl. Mater. Interfaces 8, 12211–12220 (2016).

    CAS  Google Scholar 

  171. Yao, Y., Liu, N., McDowell, M. T., Pasta, M. & Cui, Y. Improving the cycling stability of silicon nanowire anodes with conducting polymer coatings. Energy Environ. Sci. 5, 7927–7930 (2012).

    CAS  Google Scholar 

  172. Wu, H. et al. Stable Li-ion battery anodes by in-situ polymerization of conducting hydrogel to conformally coat silicon nanoparticles. Nat. Commun. 4, 1943–1946 (2013).

    Google Scholar 

  173. Yu, X. et al. Three-dimensional conductive gel network as an effective binder for high-performance Si electrodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 7, 15961–15967 (2015).

    CAS  Google Scholar 

  174. Munaoka, T. et al. Ionically conductive self-healing binder for low cost Si microparticles anodes in Li-ion batteries. Adv. Energy Mater. 414, 1703138 (2018).

    Google Scholar 

  175. Goodenough, J. B. & Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 22, 587–603 (2010).

    CAS  Google Scholar 

  176. Gauthier, M. et al. Electrode–electrolyte interface in Li-ion batteries: current understanding and new insights. J. Phys. Chem. Lett. 6, 4653–4672 (2015).

    CAS  Google Scholar 

  177. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    CAS  Google Scholar 

  178. Li, Y. et al. Atomic structure of sensitive battery materials and interfaces revealed by cryo-electron microscopy. Science 358, 506–510 (2017).

    CAS  Google Scholar 

  179. Wang, X. et al. New insights on the structure of electrochemically deposited lithium metal and its solid electrolyte interphases via cryogenic TEM. Nano Lett. 17, 7606–7612 (2017).

    CAS  Google Scholar 

  180. Zachman, M. J., Tu, Z., Choudhury, S., Archer, L. A. & Kourkoutis, L. F. Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries. Nature 560, 345–349 (2018).

    CAS  Google Scholar 

  181. Jin, Y. et al. Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J. Am. Chem. Soc. 139, 14992–15004 (2017).

    CAS  Google Scholar 

  182. Michan, A. L. et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 28, 8149–8159 (2016).

    CAS  Google Scholar 

  183. Aurbach, D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries. J. Power Sources 89, 206–218 (2000).

    CAS  Google Scholar 

  184. Tang, Y. et al. Water-soluble sericin protein enabling stable solid-electrolyte interphase for fast charging high voltage battery electrode. Adv. Mater. 29, 1701828 (2017).

    Google Scholar 

  185. Sun, B. et al. At the polymer electrolyte interfaces: the role of the polymer host in interphase layer formation in Li-batteries. J. Mater. Chem. A 3, 13994–14000 (2015).

    CAS  Google Scholar 

  186. Xu, C. et al. Interface layer formation in solid polymer electrolyte lithium batteries: an XPS study. J. Mater. Chem. A 2, 7256–7264 (2014).

    CAS  Google Scholar 

  187. Song, J., Lee, H., Choo, M.-J., Park, J.-K. & Kim, H.-T. Ionomer-liquid electrolyte hybrid ionic conductor for high cycling stability of lithium metal electrodes. Sci. Rep. 5, 14458 (2015).

    CAS  Google Scholar 

  188. Tu, Z. et al. Designing artificial solid-electrolyte interphases for single-ion and high-efficiency transport in batteries. Joule 1, 394–406 (2017).

    CAS  Google Scholar 

  189. Zhu, B. et al. Poly(dimethylsiloxane) thin film as a stable interfacial layer for high-performance lithium-metal battery anodes. Adv. Mater. 29, 1603755 (2016).

    Google Scholar 

  190. Luo, J., Fang, C.-C. & Wu, N.-L. High polarity poly(vinylidene difluoride) thin coating for dendrite-free and high-performance lithium metal anodes. Adv. Energy Mater. 8, 1701482 (2017).

    Google Scholar 

  191. Liu, Y. et al. An artificial solid electrolyte interphase with high Li-ion conductivity, mechanical strength, and flexibility for stable lithium metal anodes. Adv. Mater. 29, 1605531 (2016).

    Google Scholar 

  192. Gao, Y. et al. Interfacial chemistry regulation via a skin-grafting strategy enables high-performance lithium-metal batteries. J. Am. Chem. Soc. 139, 15288–15291 (2017).

    CAS  Google Scholar 

  193. Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

    CAS  Google Scholar 

  194. Yang, H., Leow, W. R. & Chen, X. Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater. 30, 1704347 (2018).

    Google Scholar 

  195. Hu, W. The melting point of chain polymers. J. Chem. Phys. 113, 3901–3908 (2000).

    CAS  Google Scholar 

  196. Orendorff, C. J., Lambert, T. N., Chavez, C. A., Bencomo, M. & Fenton, K. R. Polyester separators for lithium-ion cells: improving thermal stability and abuse tolerance. Adv. Energy Mater. 3, 314–320 (2012).

    Google Scholar 

  197. Zhang, J. et al. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery. Sci. Rep. 4, 4419 (2014).

    Google Scholar 

  198. Lin, D., Zhuo, D., Liu, Y. & Cui, Y. All-integrated bifunctional separator for Li dendrite detection via novel solution synthesis of a thermostable polyimide separator. J. Am. Chem. Soc. 138, 11044–11050 (2016).

    CAS  Google Scholar 

  199. Simha, R. & Boyer, R. F. On a general relation involving the glass temperature and coefficients of expansion of polymers. J. Chem. Phys. 37, 1003–1007 (1962).

    CAS  Google Scholar 

  200. Hoffman, D. M. & McKinley, B. M. Crystallinity as a selection criterion for engineering properties of high density polyethylene. Polym. Eng. Sci. 25, 562–569 (1985).

    CAS  Google Scholar 

  201. Chen, Z. et al. Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1, 15009 (2016).

    CAS  Google Scholar 

  202. Kelly, J. C., Degrood, N. L. & Roberts, M. E. Li-ion battery shut-off at high temperature caused by polymer phase separation in responsive electrolytes. Chem. Commun. 51, 5448–5451 (2015).

    CAS  Google Scholar 

  203. Shi, Y., Zhang, Q., Zhang, Y., Jia, L. & Xu, X. Promising and reversible electrolyte with thermal switching behavior for safer electrochemical storage devices. ACS Appl. Mater. Interfaces 10, 7171–7179 (2018).

    CAS  Google Scholar 

  204. Scudamore, M. J., Briggs, P. J. & Prager, F. H. Cone calorimetry—a review of tests carried out on plastics for the association of plastic manufacturers in Europe. Fire Mater. 15, 65–84 (1991).

    CAS  Google Scholar 

  205. Stalin, S., Choudhury, S., Zhang, K. & Archer, L. A. Multifunctional cross-linked polymeric membranes for safe, high-performance lithium batteries. Chem. Mater. 30, 2058–2066 (2018).

    CAS  Google Scholar 

  206. Liu, K. et al. Electrospun core-shell microfiber separator with thermal-triggered flame-retardant properties for lithium-ion batteries. Sci. Adv. 3, e1601978 (2017).

    Google Scholar 

  207. Zhou, G. et al. An aqueous inorganic polymer binder for high performance lithium–sulfur batteries with flame-retardant properties. ACS Cent. Sci. 4, 260–267 (2018).

    CAS  Google Scholar 

  208. Trigg, E. B. et al. Self-assembled highly ordered acid layers in precisely sulfonated polyethylene produce efficient proton transport. Nat. Mater. 17, 725–731 (2018).

    CAS  Google Scholar 

  209. Yanagisawa, Y., Nan, Y., Okuro, K. & Aida, T. Mechanically robust, readily repairable polymers via tailored noncovalent cross-linking. Science 359, 72–76 (2018).

    CAS  Google Scholar 

  210. Filippidi, E. et al. Toughening elastomers using mussel-inspired iron-catechol complexes. Science 358, 502–505 (2017).

    CAS  Google Scholar 

  211. Garcia, J. M. et al. Recyclable, strong thermosets and organogels via paraformaldehyde condensation with diamines. Science 344, 732–735 (2014).

    CAS  Google Scholar 

  212. Lampel, A. et al. Polymeric peptide pigments with sequence-encoded properties. Science 356, 1064–1068 (2017).

    CAS  Google Scholar 

  213. Fu, G. & Kyu, T. Effect of side-chain branching on enhancement of ionic conductivity and capacity retention of a solid copolymer electrolyte membrane. Langmuir 33, 13973–13981 (2017).

    CAS  Google Scholar 

  214. Chintapalli, M. et al. Relationship between conductivity, ion diffusion, and transference number in perfluoropolyether electrolytes. Macromolecules 49, 3508–3515 (2016).

    CAS  Google Scholar 

  215. Doeff, M. M., Edman, L., Sloop, S. E., Kerr, J. & De Jonghe, L. C. Transport properties of binary salt polymer electrolytes. J. Power Sources 89, 227–231 (2000).

    CAS  Google Scholar 

  216. Ferry, A. Ionic interactions and transport properties in methyl terminated poly(propylene glycol)(4000) complexed with LiCF3SO3. J. Phys. Chem. B 101, 150–157 (1997).

    CAS  Google Scholar 

  217. Chai, J. et al. In situ generation of poly (vinylene carbonate) based solid electrolyte with interfacial stability for LiCoO2 lithium batteries. Adv. Sci. 4, 1600377 (2016).

    Google Scholar 

  218. Tanaka, R., Fujita, T., Nishibayashi, H. & Saito, S. Ionic conduction in poly (ethylenimine)and poly (N-methylethylenimine)-lithium salt systems. Solid State Ion. 60, 119–123 (1993).

    CAS  Google Scholar 

  219. Pehlivan, L. B., Georén, P., Marsal, R., Granqvist, C. G. & Niklasson, G. A. Ion conduction of branched polyethyleneimine–lithium bis(trifluoromethylsulfonyl) imide electrolytes. Electrochim. Acta 57, 201–206 (2011).

    CAS  Google Scholar 

  220. Ranger, M. & Leclerc, M. New base-doped polyfluorene derivatives. Macromolecules 32, 3306–3313 (1999).

    CAS  Google Scholar 

  221. Sengodu, P. & Deshmukh, A. D. Conducting polymers and their inorganic composites for advanced Li-ion batteries: a review. RSC Adv. 5, 42109–42130 (2015).

    CAS  Google Scholar 

  222. Shi, H., Liu, C., Jiang, Q. & Xu, J. Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv. Electron. Mater. 1, 1500017 (2015).

    Google Scholar 

  223. Zhang, X.-Q., Cheng, X.-B., Chen, X., Yan, C. & Zhang, Q. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries. Adv. Funct. Mater. 27, 1605989 (2017).

    Google Scholar 

Download references

Acknowledgements

J.L. and D.G.M. thank the National Science Foundation Graduate Research Fellowship Program for support under grant no. DGE-114747.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the discussion of content and edited the manuscript before submission. J.L. and D.G.M. researched data for the article and wrote the article.

Corresponding author

Correspondence to Zhenan Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopez, J., Mackanic, D.G., Cui, Y. et al. Designing polymers for advanced battery chemistries. Nat Rev Mater 4, 312–330 (2019). https://doi.org/10.1038/s41578-019-0103-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41578-019-0103-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing