Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immune activation in irritable bowel syndrome: what is the evidence?

A Publisher Correction to this article was published on 23 March 2022

This article has been updated

Abstract

Irritable bowel syndrome (IBS) is a chronic functional gastrointestinal disorder that is characterized by abdominal pain and an altered defecation pattern. It affects between 5 and 20% of the general population and can seriously impact quality of life. The pathophysiology of IBS is rather complex and multifactorial including, for example, altered signalling by the gut–brain axis, dysbiosis, abnormal visceral pain signalling and intestinal immune activation. The latter has gained particular interest in recent years, with growing insight into the bidirectional communication between the nervous system and the immune system. In this Review, we detail the current evidence suggesting that immune activation contributes to the pathology seen in patients with IBS and discuss the potential mechanisms involved. Moreover, we describe how immune mediators, particularly those released by mast cells, can directly activate or sensitize pain-transmitting nerves, leading to increased pain signalling and abdominal pain. Finally, we discuss the potential of interventions targeting immune activation as a new therapeutic strategy for patients suffering from IBS.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Intestinal afferent innervation.
Fig. 2: Potential mechanisms leading to immune activation in IBS.
Fig. 3: Therapeutic approaches targeting the immune system in IBS.

Change history

References

  1. Lacy, B. E. et al. Bowel disorders. Gastroenterology 150, 1393–1407 (2016).

    Google Scholar 

  2. Lovell, R. M. & Ford, A. C. Global prevalence of and risk factors for irritable bowel syndrome: a meta-analysis. Clin. Gastroenterol. Hepatol. 10, 712–721 (2012).

    PubMed  Google Scholar 

  3. Ford, A. C., Sperber, A. D., Corsetti, M. & Camilleri, M. Irritable bowel syndrome. Lancet 396, 1675–1688 (2020).

    CAS  PubMed  Google Scholar 

  4. Drossman, D. A. et al. U.S. householder survey of functional gastrointestinal disorders. Prevalence, sociodemography, and health impact. Dig. Dis. Sci. 38, 1569–1580 (1993).

    CAS  PubMed  Google Scholar 

  5. Shen, T. C. et al. Bidirectional association between asthma and irritable bowel syndrome: two population-based retrospective cohort studies. PLoS ONE 11, e0153911 (2016).

    PubMed  PubMed Central  Google Scholar 

  6. Jones, M. P., Walker, M. M., Ford, A. C. & Talley, N. J. The overlap of atopy and functional gastrointestinal disorders among 23,471 patients in primary care. Aliment. Pharmacol. Ther. 40, 382–391 (2014).

    CAS  PubMed  Google Scholar 

  7. Klem, F. et al. Prevalence, risk factors, and outcomes of irritable bowel syndrome after infectious enteritis: a systematic review and meta-analysis. Gastroenterology 155, 1042–1054 (2017).

    Google Scholar 

  8. Böhn, L., Störsrud, S., Törnblom, H., Bengtsson, U. & Simrén, M. Self-reported food-related gastrointestinal symptoms in IBS are common and associated with more severe symptoms and reduced quality of life. Am. J. Gastroenterol. 108, 634–641 (2013).

    PubMed  Google Scholar 

  9. Major, G. et al. Colon hypersensitivity to distension, rather than excessive gas production, produces carbohydrate-related symptoms in individuals with irritable bowel syndrome. Gastroenterology 152, 124–133 (2017).

    PubMed  Google Scholar 

  10. Barrett, J. S. et al. Dietary poorly absorbed, short-chain carbohydrates increase delivery of water and fermentable substrates to the proximal colon. Aliment. Pharmacol. Ther. 31, 874–882 (2010).

    CAS  PubMed  Google Scholar 

  11. Staudacher, H. M. & Whelan, K. The low FODMAP diet: recent advances in understanding its mechanisms and efficacy in IBS. Gut 66, 1517–1527 (2017).

    CAS  PubMed  Google Scholar 

  12. Hiatt, R. B. & Katz, L. Mast cells in inflammatory conditions of the gastrointestinal tract. Am. J. Gastroenterol. 37, 541–545 (1962).

    CAS  PubMed  Google Scholar 

  13. Brookes, S. J. H., Spencer, N. J., Costa, M. & Zagorodnyuk, V. P. Extrinsic primary afferent signalling in the gut. Nat. Rev. Gastroenterol. Hepatol. 10, 286–296 (2013).

    CAS  PubMed  Google Scholar 

  14. Yoo, B. B. & Mazmanian, S. K. The enteric network: interactions between the immune and nervous systems of the gut. Immunity 46, 910–926 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Brierley, S. M., Jones, R. C. W., Gebhart, G. F. & Blackshaw, L. A. Splanchnic and pelvic mechanosensory afferents signal different qualities of colonic stimuli in mice. Gastroenterology 127, 166–178 (2004). This study shows that the splanchnic and pelvic nerves contain distinct populations of mechanosensitive afferent neurons and differentially transmit mechanical information from the colon.

    PubMed  Google Scholar 

  16. Grundy, L., Erickson, A. & Brierley, S. M. Visceral pain. Annu. Rev. Physiol. 81, 261–284 (2019).

    PubMed  Google Scholar 

  17. Brierley, S. M. & Linden, D. R. Neuroplasticity and dysfunction after gastrointestinal inflammation. Nat. Rev. Gastroenterol. Hepatol. 11, 611–627 (2014).

    PubMed  Google Scholar 

  18. Feng, B. & Gebhart, G. F. Characterization of silent afferents in the pelvic and splanchnic innervations of the mouse colorectum. Am. J. Physiol. Gastrointest. Liver Physiol. 300, G170–G180 (2011).

    CAS  PubMed  Google Scholar 

  19. Hockley, J. R. F. et al. Single-cell RNAseq reveals seven classes of colonic sensory neuron. Gut 68, 633–644 (2018). This study identifies seven subtypes of sensory neurons innervating the colon of mice using single-cell RNA sequencing, therefore providing the molecular signature of specific neurons projecting to the splanchnic and pelvic nerves.

    PubMed  Google Scholar 

  20. Ritchie, J. Pain from distension of the pelvic colon by inflating a balloon in the irritable colon syndrome. Gut 14, 125–132 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Mertz, H., Naliboff, B., Munakata, J., Niazi, N. & Mayer, E. A. Altered rectal perception is a biological marker of patients with irritable bowel syndrome. Gastroenterology 109, 40–52 (1995).

    CAS  PubMed  Google Scholar 

  22. Posserud, I. et al. Altered rectal perception in irritable bowel syndrome is associated with symptom severity. Gastroenterology 133, 1113–1123 (2007).

    PubMed  Google Scholar 

  23. Whitehead, W. E. et al. Tolerance for rectosigmoid distention in irritable bowel syndrome. Gastroenterology 98, 1187–1192 (1990).

    CAS  PubMed  Google Scholar 

  24. Lembo, T. et al. Evidence for the hypersensitivity of lumbar splanchnic afferents in irritable bowel syndrome. Gastroenterology 107, 1686–1696 (1994).

    CAS  PubMed  Google Scholar 

  25. Törnblom, H., Van Oudenhove, L., Tack, J. & Simrén, M. Interaction between preprandial and postprandial rectal sensory and motor abnormalities in IBS. Gut 63, 1441–1449 (2014).

    PubMed  Google Scholar 

  26. Simrén, M. et al. Visceral hypersensitivity is associated with GI symptom severity in functional GI disorders: consistent findings from five different patient cohorts. Gut 67, 255–262 (2018).

    PubMed  Google Scholar 

  27. Boué, J. et al. Endogenous regulation of visceral pain via production of opioids by colitogenic CD4+ T cells in mice. Gastroenterology 146, 166–175 (2014).

    PubMed  Google Scholar 

  28. Hughes, P. A. et al. Post-inflammatory colonic afferent sensitisation: different subtypes, different pathways and different time courses. Gut 58, 1333–1341 (2009).

    CAS  PubMed  Google Scholar 

  29. Hughes, P. A. et al. Sensory neuro-immune interactions differ between irritable bowel syndrome subtypes. Gut 62, 1456–1465 (2013).

    CAS  PubMed  Google Scholar 

  30. Cenac, N. et al. Role for protease activity in visceral pain in irritable bowel syndrome. J. Clin. Invest. 117, 636–647 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Barbara, G. et al. Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132, 26–37 (2007).

    CAS  PubMed  Google Scholar 

  32. Buhner, S. et al. Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137, 1425–1434 (2009).

    CAS  PubMed  Google Scholar 

  33. Cremon, C. et al. Intestinal serotonin release, sensory neuron activation, and abdominal pain in irritable bowel syndrome. Am. J. Gastroenterol. 106, 1290–1298 (2011).

    CAS  PubMed  Google Scholar 

  34. Cibert-Goton, V. et al. Pain severity correlates with biopsy-mediated colonic afferent activation but not psychological scores in patients with IBS-D. Clin. Transl. Gastroenterol. 12, e00313 (2021).

    PubMed  PubMed Central  Google Scholar 

  35. Ji, R. R., Samad, T. A., Jin, S. X., Schmoll, R. & Woolf, C. J. p38 MAPK activation by NGF in primary sensory neurons after inflammation increases TRPV1 levels and maintains heat hyperalgesia. Neuron 36, 57–68 (2002).

    CAS  PubMed  Google Scholar 

  36. Linley, J. E., Rose, K., Ooi, L. & Gamper, N. Understanding inflammatory pain: ion channels contributing to acute and chronic nociception. Pflug. Arch. Eur. J. Physiol. 459, 657–669 (2010).

    CAS  Google Scholar 

  37. Pattison, L. A., Krock, E., Svensson, C. I. & Smith, E. S. J. Cell–cell interactions in joint pain: rheumatoid arthritis and osteoarthritis. Pain 162, 714–717 (2021).

    PubMed  Google Scholar 

  38. Hucho, T. & Levine, J. D. Signaling pathways in sensitization: toward a nociceptor cell biology. Neuron 55, 365–376 (2007).

    CAS  PubMed  Google Scholar 

  39. Gold, M. S. & Gebhart, G. F. Nociceptor sensitization in pain pathogenesis. Nat. Med. 16, 1248–1257 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Van Wanrooij, S. J. M. M. et al. Sensitivity testing in irritable bowel syndrome with rectal capsaicin stimulations: role of TRPV1 upregulation and sensitization in visceral hypersensitivity? Am. J. Gastroenterol. 109, 99–109 (2014).

    PubMed  Google Scholar 

  41. Valdez-Morales, E. E. et al. Sensitization of peripheral sensory nerves by mediators from colonic biopsies of diarrhea-predominant irritable bowel syndrome patients: a role for PAR2. Am. J. Gastroenterol. 108, 1634–1643 (2013).

    CAS  PubMed  Google Scholar 

  42. Wouters, M. M. et al. Histamine receptor H1-mediated sensitization of TRPV1 mediates visceral hypersensitivity and symptoms in patients with irritable bowel syndrome. Gastroenterology 150, 875–887.e9 (2016). This study shows that sensitization of TRPV1 is mediated by H1R in IBS and treatment with ebastine, a H1R antagonist, reduces VHS, symptoms and abdominal pain in patients with IBS.

    CAS  PubMed  Google Scholar 

  43. Balemans, D. et al. Evidence for long-term sensitization of the bowel in patients with post-infectious-IBS. Sci. Rep. 7, 13606 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Balemans, D. et al. Histamine-mediated potentiation of TRPA1 and TRPV4 signaling in submucosal neurons in IBS patients. Am. J. Physiol. Gastrointest. Liver Physiol. 316, G338–G349 (2019).

    CAS  PubMed  Google Scholar 

  45. Cenac, N. et al. Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut 59, 481–488 (2010).

    CAS  PubMed  Google Scholar 

  46. Rolland-Fourcade, C. et al. Epithelial expression and function of trypsin-3 in irritable bowel syndrome. Gut 66, 1767–1778 (2017).

    CAS  PubMed  Google Scholar 

  47. Jimenez-Vargas, N. N. et al. Protease-activated receptor-2 in endosomes signals persistent pain of irritable bowel syndrome. Proc. Natl Acad. Sci. USA 115, E7438–E7447 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Amadesi, S. Protease-activated receptor 2 sensitizes the capsaicin receptor transient receptor potential vanilloid receptor 1 to induce hyperalgesia. J. Neurosci. 24, 4300–4312 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dai, Y. et al. Sensitization of TRPA1 by PAR2 contributes to the sensation of inflammatory pain. J. Clin. Invest. 117, 1979–1987 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Grant, A. D. et al. Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J. Physiol. 578, 715–733 (2007).

    CAS  PubMed  Google Scholar 

  51. Dothel, G. et al. Nerve fiber outgrowth is increased in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 148, 1002–1011 (2015).

    CAS  PubMed  Google Scholar 

  52. Yu, Y. B. et al. Brain-derived neurotrophic factor contributes to abdominal pain in irritable bowel syndrome. Gut 61, 685–694 (2012).

    CAS  PubMed  Google Scholar 

  53. Brizuela, M., Castro, J., Harrington, A. M. & Brierley, S. M. Pruritogenic mechanisms and gut sensation: putting the “irritant” into irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 320, G1131–G1141 (2021).

    CAS  PubMed  Google Scholar 

  54. Gwee, K. A. et al. The role of psychological and biological factors in postinfective gut dysfunction. Gut 44, 400–406 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Spiller, R. C. et al. Increased rectal mucosal enteroendocrine cells, T lymphocytes, and increased gut permeability following acute Campylobacter enteritis and in post-dysenteric irritable bowel syndrome. Gut 47, 804–811 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Bashashati, M. et al. Colonic immune cells in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 30, e13192 (2018).

    Google Scholar 

  57. Bashashati, M. et al. Cytokine imbalance in irritable bowel syndrome: a systematic review and meta-analysis. Neurogastroenterol. Motil. 26, 1036–1048 (2014).

    CAS  PubMed  Google Scholar 

  58. Bennet, S. M. P. P. et al. Global cytokine profiles and association with clinical characteristics in patients with irritable bowel syndrome. Am. J. Gastroenterol. 111, 1165–1176 (2016).

    CAS  PubMed  Google Scholar 

  59. Bennet, S. M. P. P. et al. Systemic cytokines are elevated in a subset of patients with irritable bowel syndrome but largely unrelated to symptom characteristics. Neurogastroenterol. Motil. 30, 1–13 (2018).

    Google Scholar 

  60. Aguilera-Lizarraga, J. et al. Expression of immune-related genes in rectum and colon descendens of irritable bowel syndrome patients is unrelated to clinical symptoms. Neurogastroenterol. Motil. 31, e13579 (2019).

    PubMed  Google Scholar 

  61. Barbara, G. et al. Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126, 693–702 (2004). This seminal study shows that mucosal infiltration of colonic mast cells in close proximity to nerve fibres and the release of mediators may play an important role in the development of abdominal pain in patients with IBS.

    PubMed  Google Scholar 

  62. Aguilera-Lizarraga, J. et al. Local immune response to food antigens drives meal-induced abdominal pain. Nature 590, 151–156 (2021). This study characterizes a peripheral mechanism that underlies food-induced abdominal pain upon loss of local oral tolerance, mediated by food-antigen specific IgE-dependent activation of mast cells in the colon.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Vicario, M. et al. Increased humoral immunity in the jejunum of diarrhoea-predominant irritable bowel syndrome associated with clinical manifestations. Gut 64, 1379–1388 (2015).

    CAS  PubMed  Google Scholar 

  64. Fritscher-Ravens, A. et al. Confocal endomicroscopy shows food-associated changes in the intestinal mucosa of patients with irritable bowel syndrome. Gastroenterology 147, 1012–1020.e3 (2014). This study uses confocal later endomicroscopy to show that the intestinal mucosa of patients with IBS undergoes profound structural remodelling upon exposure to food antigens.

    PubMed  Google Scholar 

  65. Fritscher-Ravens, A. et al. Many patients with irritable bowel syndrome have atypical food allergies not associated with immunoglobulin E. Gastroenterology 157, 109–118 (2019).

    PubMed  Google Scholar 

  66. Faria, A. M. C. & Weiner, H. L. Oral tolerance. Immunol. Rev. 206, 232–259 (2005).

    CAS  PubMed  Google Scholar 

  67. Fonseca, D. M. Da et al. Microbiota-dependent sequelae of acute infection compromise tissue-specific immunity. Cell 163, 354–366 (2015).

    PubMed  PubMed Central  Google Scholar 

  68. Bouziat, R. et al. Reovirus infection triggers inflammatory responses to dietary antigens and development of celiac disease. Science 356, 44–50 (2017). This study shows that a reovirus infection can interfere with the development of oral tolerance to dietary antigens by suppressing peripheral Treg cells and promoting TH1-type immunity against these food antigens.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Caminero, A., Meisel, M., Jabri, B. & Verdu, E. F. Mechanisms by which gut microorganisms influence food sensitivities. Nat. Rev. Gastroenterol. Hepatol. 16, 7–18 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Yu, W., Freeland, D. M. H. & Nadeau, K. C. Food allergy: immune mechanisms, diagnosis and immunotherapy. Nat. Rev. Immunol. 16, 751–765 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Kassinen, A. et al. The fecal microbiota of irritable bowel syndrome patients differs significantly from that of healthy subjects. Gastroenterology 133, 24–33 (2007).

    CAS  PubMed  Google Scholar 

  72. Hadizadeh, F. et al. Faecal microbiota composition associates with abdominal pain in the general population. Gut 67, 778–779 (2018).

    PubMed  Google Scholar 

  73. Frost, F. et al. Functional abdominal pain and discomfort (IBS) is not associated with faecal microbiota composition in the general population. Gut 68, 1131–1133 (2019).

    CAS  PubMed  Google Scholar 

  74. Hugerth, L. W. et al. No distinct microbiome signature of irritable bowel syndrome found in a Swedish random population. Gut 69, 1076–1084 (2020).

    PubMed  Google Scholar 

  75. Jeffery, I. B. et al. An irritable bowel syndrome subtype defined by species-specific alterations in faecal microbiota. Gut 61, 997–1006 (2012).

    PubMed  Google Scholar 

  76. Pittayanon, R. et al. Gut microbiota in patients with irritable bowel syndrome — a systematic review. Gastroenterology 157, 97–108 (2019).

    PubMed  Google Scholar 

  77. Schoepfer, A. M., Schaffer, T., Seibold-Schmid, B., Müller, S. & Seibold, F. Antibodies to flagellin indicate reactivity to bacterial antigens in IBS patients. Neurogastroenterol. Motil. 20, 1110–1118 (2008).

    CAS  PubMed  Google Scholar 

  78. Zhou, S. Y. et al. FODMAP diet modulates visceral nociception by lipopolysaccharide-mediated intestinal inflammation and barrier dysfunction. J. Clin. Invest. 128, 267–280 (2018).

    PubMed  Google Scholar 

  79. Vervier, K. et al. Two microbiota subtypes identified in irritable bowel syndrome with distinct responses to the low FODMAP diet. Gut https://doi.org/10.1136/gutjnl-2021-325177 (2021).

    Article  PubMed  Google Scholar 

  80. Mars, R. A. T. et al. Longitudinal multi-omics reveals subset-specific mechanisms underlying irritable bowel syndrome. Cell 182, 1460–1473 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Botschuijver, S. et al. Intestinal fungal dysbiosis is associated with visceral hypersensitivity in patients with irritable bowel syndrome and rats. Gastroenterology 153, 1026–1039 (2017).

    PubMed  Google Scholar 

  82. Larauche, M., Mulak, A. & Taché, Y. Stress and visceral pain: from animal models to clinical therapies. Exp. Neurol. 233, 49–67 (2012).

    PubMed  Google Scholar 

  83. Van Den Wijngaard, R. M. et al. Essential role for TRPV1 in stress-induced (mast cell-dependent) colonic hypersensitivity in maternally separated rats. Neurogastroenterol. Motil. 21, 1107–e94 (2009).

    PubMed  Google Scholar 

  84. Coughlan, S. et al. The gut virome in irritable bowel syndrome differs from that of controls. Gut Microbes 13, 1–15 (2021).

    CAS  PubMed  Google Scholar 

  85. Mihindukulasuriya, K. A. et al. Multi-omics analyses show disease, diet, and transcriptome interactions with the virome. Gastroenterology 161, 1194–1207.e8 (2021).

    CAS  PubMed  Google Scholar 

  86. Odenwald, M. A. & Turner, J. R. The intestinal epithelial barrier: a therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 14, 9–21 (2017).

    CAS  PubMed  Google Scholar 

  87. Shen, L., Weber, C. R., Raleigh, D. R., Yu, D. & Turner, J. R. Tight junction pore and leak pathways: a dynamic duo. Annu. Rev. Physiol. 73, 289–309 (2011).

    Google Scholar 

  88. Vivinus-Nébot, M. et al. Combination of allergic factors can worsen diarrheic irritable bowel syndrome: role of barrier defects and mast cells. Am. J. Gastroenterol. 107, 75–81 (2012).

    PubMed  Google Scholar 

  89. Hanning, N. et al. Intestinal barrier dysfunction in irritable bowel syndrome: a systematic review. Ther. Adv. Gastroenterol. 14, 1756284821993586 (2021).

    CAS  Google Scholar 

  90. Khoshbin, K. et al. Development and validation of test for “leaky gut” small intestinal and colonic permeability using sugars in healthy adults. Gastroenterology 161, 463–475.e13 (2021).

    CAS  PubMed  Google Scholar 

  91. Piche, T. et al. Impaired Intestinal barrier integrity in the colon of patients with irritable bowel syndrome: involvement of soluble mediators. Gut 58, 196–201 (2009).

    CAS  PubMed  Google Scholar 

  92. Dunlop, S. P. et al. Abnormal intestinal permeability in subgroups of diarrhea-predominant irritable bowel syndromes. Am. J. Gastroenterol. 101, 1288–1294 (2006).

    PubMed  Google Scholar 

  93. Vergnolle, N. Clinical relevance of proteinase activated receptors (PARs) in the gut. Gut 54, 867–874 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Vergnolle, N., Wallace, J. L., Bunnett, N. W. & Hollenberg, M. D. Protease-activated receptors in inflammation, neuronal signaling and pain. Trends Pharmacol. Sci. 22, 146–152 (2001).

    CAS  PubMed  Google Scholar 

  95. Gecse, K. et al. Increased faecal serine protease activity in diarrhoeic IBS patients: a colonic lumenal factor impairing colonic permeability and sensitivity. Gut 57, 591–599 (2008).

    CAS  PubMed  Google Scholar 

  96. Annaházi, A. et al. Luminal cysteine-proteases degrade colonic tight junction structure and are responsible for abdominal pain in constipation-predominant IBS. Am. J. Gastroenterol. 108, 1322–1331 (2013).

    PubMed  Google Scholar 

  97. Róka, R. et al. A pilot study of fecal serine-protease activity: a pathophysiologic factor in diarrhea-predominant irritable bowel syndrome. Clin. Gastroenterol. Hepatol. 5, 550–555 (2007).

    PubMed  Google Scholar 

  98. Tooth, D. et al. Characterisation of faecal protease activity in irritable bowel syndrome with diarrhoea: origin and effect of gut transit. Gut 63, 753–760 (2014).

    CAS  PubMed  Google Scholar 

  99. Wilcz-Villega, E. M., McClean, S. & O’Sullivan, M. A. Mast cell tryptase reduces junctional adhesion molecule-A (JAM-A) expression in intestinal epithelial cells: implications for the mechanisms of barrier dysfunction in irritable bowel syndrome. Am. J. Gastroenterol. 108, 1140–1151 (2013).

    CAS  PubMed  Google Scholar 

  100. Tulic, M. K. et al. Presence of commensal house dust mite allergen in human gastrointestinal tract: a potential contributor to intestinal barrier dysfunction. Gut 65, 757–766 (2016).

    CAS  PubMed  Google Scholar 

  101. Iliev, I. D. et al. Human intestinal epithelial cells promote the differentiation of tolerogenic dendritic cells. Gut 58, 1481–1489 (2009).

    CAS  PubMed  Google Scholar 

  102. Hammad, H. & Lambrecht, B. N. Barrier epithelial cells and the control of type 2 immunity. Immunity 43, 29–40 (2015).

    CAS  PubMed  Google Scholar 

  103. Von Moltke, J., Ji, M., Liang, H. E. & Locksley, R. M. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature 529, 221–225 (2016).

    Google Scholar 

  104. Liew, F. Y., Girard, J. P. & Turnquist, H. R. Interleukin-33 in health and disease. Nat. Rev. Immunol. 16, 676–689 (2016).

    CAS  PubMed  Google Scholar 

  105. Hepworth, M. R., Maurer, M. & Hartmann, S. Regulation of type 2 immunity to helminths by mast cells. Gut Microbes 3, 476–481 (2012).

    PubMed  PubMed Central  Google Scholar 

  106. Price, A. E. et al. Systemically dispersed innate IL-13-expressing cells in type 2 immunity. Proc. Natl Acad. Sci. USA 107, 11489–11494 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Nakajima, S., Kabata, H., Kabashima, K. & Asano, K. Anti-TSLP antibodies: targeting a master regulator of type 2 immune responses. Allergol. Int. 69, 197–203 (2020).

    CAS  PubMed  Google Scholar 

  108. Ito, T. et al. TSLP-activated dendritic cells induce an inflammatory T helper type 2 cell response through OX40 ligand. J. Exp. Med. 202, 1213–1223 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Ma, H., Qiu, Y. & Yang, H. Intestinal intraepithelial lymphocytes: maintainers of intestinal immune tolerance and regulators of intestinal immunity. J. Leukoc. Biol. 109, 339–347 (2021).

    CAS  PubMed  Google Scholar 

  110. Matricon, J. et al. Review article: Associations between immune activation, intestinal permeability and the irritable bowel syndrome. Aliment. Pharmacol. Ther. 36, 1009–1031 (2012).

    CAS  PubMed  Google Scholar 

  111. Frossard, C. P., Asigbetse, K. E., Burger, D. & Eigenmann, P. A. Gut T cell receptor-γδ+ intraepithelial lymphocytes are activated selectively by cholera toxin to break oral tolerance in mice. Clin. Exp. Immunol. 180, 118–130 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Junker, Y. et al. Wheat amylase trypsin inhibitors drive intestinal inflammation via activation of Toll-like receptor 4. J. Exp. Med. 209, 2395–2408 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Zevallos, V. F. et al. Nutritional wheat amylase-trypsin inhibitors promote intestinal inflammation via activation of myeloid cells. Gastroenterology 152, 1100–1113 (2017).

    CAS  PubMed  Google Scholar 

  114. Greger, J. L. & Sutherland, J. E. Aluminum exposure and metabolism. Crit. Rev. Clin. Lab. Sci. 34, 439–474 (1997).

    CAS  PubMed  Google Scholar 

  115. Esquerre, N. et al. Aluminum ingestion promotes colorectal hypersensitivity in rodents. Cell Mol. Gastroenterol. Hepatol. 7, 185–196 (2019).

    PubMed  Google Scholar 

  116. Bischoff, S. C. Role of mast cells in allergic and non-allergic immune responses: comparison of human and murine data. Nat. Rev. Immunol. 7, 93–104 (2007).

    CAS  PubMed  Google Scholar 

  117. Galli, S. J., Nakae, S. & Tsai, M. Mast cells in the development of adaptive immune responses. Nat. Immunol. 6, 135–142 (2005).

    CAS  PubMed  Google Scholar 

  118. Krystel-Whittemore, M., Dileepan, K. N. & Wood, J. G. Mast cell: a multi-functional master cell. Front. Immunol. 6, 620 (2016).

    PubMed  PubMed Central  Google Scholar 

  119. Albert-Bayo, M. et al. Intestinal mucosal mast cells: key modulators of barrier function and homeostasis. Cells 8, 135 (2019).

    CAS  PubMed Central  Google Scholar 

  120. Abraham, S. N. & St. John, A. L. Mast cell-orchestrated immunity to pathogens. Nat. Rev. Immunol. 10, 440–452 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Redegeld, F. A., Yu, Y., Kumari, S., Charles, N. & Blank, U. Non-IgE mediated mast cell activation. Immunol. Rev. 282, 87–113 (2018).

    CAS  PubMed  Google Scholar 

  122. Galli, S. J. & Tsai, M. IgE and mast cells in allergic disease. Nat. Med. 18, 693–704 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Chiu, I. M., Von Hehn, C. A. & Woolf, C. J. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15, 1063–1067 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. McNeil, B. D. et al. Identification of a mast-cell-specific receptor crucial for pseudo-allergic drug reactions. Nature 519, 137–141 (2015).

    Google Scholar 

  125. Meixiong, J. et al. Activation of mast-cell-expressed mas-related G-protein-coupled receptors drives non-histaminergic itch. Immunity 50, 1163–1171 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Green, D. P., Limjunyawong, N., Gour, N., Pundir, P. & Dong, X. A mast-cell-specific receptor mediates neurogenic inflammation and pain. Neuron 101, 412–420 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Qin, H. Y., Cheng, C. W., Tang, X. D. & Bian, Z. X. Impact of psychological stress on irritable bowel syndrome. World J. Gastroenterol. 20, 14126–14131 (2014).

    PubMed  PubMed Central  Google Scholar 

  128. Castagliuolo, I. et al. Acute stress causes mucin release from rat colon: role of corticotropin releasing factor and mast cells. Am. J. Physiol. Gastrointest. Liver Physiol. 271, G884–G892 (1996).

    CAS  Google Scholar 

  129. Söderholm, J. D. et al. Chronic stress induces mast cell-dependent bacterial adherence and initiates mucosal inflammation in rat intestine. Gastroenterology 123, 1099–1108 (2002).

    PubMed  Google Scholar 

  130. Theoharides, T. C. et al. Mast cells and inflammation. Biochim. Biophys. Acta 1822, 21–33 (2012).

    CAS  PubMed  Google Scholar 

  131. Kempuraj, D. et al. Corticotropin-releasing hormone and its structurally related urocortin are synthesized and secreted by human mast cells. Endocrinology 145, 43–48 (2004).

    CAS  PubMed  Google Scholar 

  132. Camilleri, M. Diagnosis and treatment of irritable bowel syndrome: a review. JAMA 325, 865–877 (2021).

    CAS  PubMed  Google Scholar 

  133. Dunlop, S. P. et al. Randomized, double-blind, placebo-controlled trial of prednisolone in post-infectious irritable bowel syndrome. Aliment. Pharmacol. Ther. 18, 77–84 (2003).

    CAS  PubMed  Google Scholar 

  134. Jalanka, J. et al. Colonic gene expression and fecal microbiota in diarrhea-predominant irritable bowel syndrome: increased Toll-like receptor 4 but minimal inflammation and no response to mesalazine. J. Neurogastroenterol. Motil. 27, 279–291 (2021).

    PubMed  PubMed Central  Google Scholar 

  135. Barbara, G. et al. Randomised controlled trial of mesalazine in IBS. Gut 65, 82–90 (2016).

    CAS  PubMed  Google Scholar 

  136. Lam, C. et al. A mechanistic multicentre, parallel group, randomised placebo-controlled trial of mesalazine for the treatment of IBS with diarrhoea (IBS-D). Gut 65, 91–99 (2016).

    CAS  PubMed  Google Scholar 

  137. Lobo, B. et al. Downregulation of mucosal mast cell activation and immune response in diarrhoea-irritable bowel syndrome by oral disodium cromoglycate: a pilot study. U. Eur. Gastroenterol. J. 5, 887–897 (2017).

    CAS  Google Scholar 

  138. Klooker, T. K. et al. The mast cell stabiliser ketotifen decreases visceral hypersensitivity and improves intestinal symptoms in patients with irritable bowel syndrome. Gut 59, 1213–1221 (2010).

    CAS  PubMed  Google Scholar 

  139. Pearson, J. S., Niven, R. M., Meng, J., Atarodi, S. & Whorwell, P. J. Immunoglobulin E in irritable bowel syndrome: another target for treatment? A case report and literature review. Ther. Adv. Gastroenterol. 8, 270–277 (2015).

    CAS  Google Scholar 

  140. Rothenberg, M. E. An allergic basis for abdominal pain. N. Engl. J. Med. 384, 2156–2158 (2021).

    PubMed  Google Scholar 

  141. Black, C. J. et al. Efficacy of pharmacological therapies in patients with IBS with diarrhoea or mixed stool pattern: systematic review and network meta-analysis. Gut 69, 74–82 (2020).

    CAS  PubMed  Google Scholar 

  142. Ford, A. C., Harris, L. A., Lacy, B. E., Quigley, E. M. M. & Moayyedi, P. Systematic review with meta-analysis: the efficacy of prebiotics, probiotics, synbiotics and antibiotics in irritable bowel syndrome. Aliment. Pharmacol. Ther. 48, 1044–1060 (2018).

    PubMed  Google Scholar 

  143. Pimentel, M. et al. Rifaximin therapy for patients with irritable bowel syndrome without constipation. N. Engl. J. Med. 364, 22–32 (2011).

    CAS  PubMed  Google Scholar 

  144. O’Toole, P. W. & Shanahan, F. Transplanting microbes for irritable bowels or irritated microbes or both? Gastroenterology 160, 15–17 (2021).

    PubMed  Google Scholar 

  145. Shanahan, F., Ghosh, T. S. & O’Toole, P. W. The healthy microbiome — what is the definition of a healthy gut microbiome? Gastroenterology 160, 483–494 (2021).

    PubMed  Google Scholar 

  146. Xu, D. et al. Efficacy of fecal microbiota transplantation in irritable bowel syndrome: a systematic review and meta-analysis. Am. J. Gastroenterol. 114, 1043–1050 (2019).

    PubMed  PubMed Central  Google Scholar 

  147. McGuire, C. et al. Ex vivo study of human visceral nociceptors. Gut 67, 86–96 (2018).

    CAS  PubMed  Google Scholar 

  148. Jiang, W. et al. ‘First-in-man’: characterising the mechanosensitivity of human colonic afferents. Gut 60, 281–282 (2011).

    PubMed  Google Scholar 

  149. Lyte, M. & Cryan, J. F. Microbial Endocrinology: The Microbiota–Gut–Brain Axis in Health and Cognitive Function. Advances in Experimental Medicine and Biology (Springer, 2014).

Download references

Acknowledgements

J.A.-L. is supported by a FWO postdoctoral fellowship (12X9820N). G.E.B. is funded by the European Research Council (ERC) Advanced Grant (833816-NEUMACS) and the KU Leuven internal funding grant C1 (C14/18/086).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to researching data for article, discussion of content, the writing and the review and editing of the manuscript.

Corresponding author

Correspondence to Guy E. Boeckxstaens.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Immunology thanks S. Abraham, E. Mayer and R. Spiller for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aguilera-Lizarraga, J., Hussein, H. & Boeckxstaens, G.E. Immune activation in irritable bowel syndrome: what is the evidence?. Nat Rev Immunol (2022). https://doi.org/10.1038/s41577-022-00700-9

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41577-022-00700-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing