Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MXene chemistry, electrochemistry and energy storage applications

Abstract

The diverse and tunable surface and bulk chemistry of MXenes affords valuable and distinctive properties, which can be useful across many components of energy storage devices. MXenes offer diverse functions in batteries and supercapacitors, including double-layer and redox-type ion storage, ion transfer regulation, steric hindrance, ion redistribution, electrocatalysts, electrodeposition substrates and so on. They have been utilized to enhance the stability and performance of electrodes, electrolytes and separators. In this Review, we present a discussion on the roles of MXene bulk and surface chemistries across various energy storage devices and clarify the correlations between their chemical properties and the required functions. We also provide guidelines for the utilization of MXene surface terminations to control the properties and improve the performance of batteries and supercapacitors. Finally, we conclude with a perspective on the challenges and opportunities of MXene-based energy storage components towards future practical applications.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The evolution of bulk and surface chemistry of MXenes.
Fig. 2: Electrochemical properties of MXene electrodes.
Fig. 3: Mechanical reinforcement, ion transfer regulation and steric hindrance.
Fig. 4: Induced ion redistribution and electrodeposition chemistry.
Fig. 5: Multifunctional MXene additives for better electrodes.

References

  1. Naguib, M. et al. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 23, 4207–4207 (2011). This is the first reported MXene synthesis.

    Google Scholar 

  2. Lukatskaya, M. R. et al. Cation intercalation and high volumetric capacitance of two-dimensional titanium carbide. Science 341, 1502–1505 (2013). This article highlights the broad electrochemical tolerance of MXenes for a variety of cations.

    CAS  PubMed  Google Scholar 

  3. Deysher, G. et al. Synthesis of Mo4VAlC4 MAX phase and two-dimensional Mo4VC4 MXene with five atomic layers of transition metals. ACS Nano 14, 204–217 (2020).

    CAS  PubMed  Google Scholar 

  4. Zeraati, A. S. et al. Improved synthesis of Ti3C2Tx MXenes resulting in exceptional electrical conductivity, high synthesis yield, and enhanced capacitance. Nanoscale 13, 3572–3580 (2021).

    Google Scholar 

  5. Han, M. et al. Beyond Ti3C2Tx: MXenes for electromagnetic interference shielding. ACS Nano 14, 5008–5016 (2020).

    CAS  PubMed  Google Scholar 

  6. Lipatov, A. et al. Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers. Sci. Adv. 4, eaat0491 (2018). This paper reports the elastic properties of the MXene monolayer and bilayer.

    PubMed  PubMed Central  Google Scholar 

  7. Lipatov, A. et al. Electrical and elastic properties of individual single-layer Nb4C3Tx MXene flakes. Adv. Electron. Mater. 6, 1901382 (2020).

    CAS  Google Scholar 

  8. Borysiuk, V. N., Mochalin, V. N. & Gogotsi, Y. Molecular dynamic study of the mechanical properties of two-dimensional titanium carbides Tin+1Cn (MXenes). Nanotechnology 26, 265705 (2015).

    PubMed  Google Scholar 

  9. Maleski, K., Shuck, C. E., Fafarman, A. T. & Gogotsi, Y. The broad chromatic range of two-dimensional transition metal carbides. Adv. Opt. Mater. 9, 2001563 (2021).

    CAS  Google Scholar 

  10. Salles, P. et al. Electrochromic effect in titanium carbide MXene thin films produced by dip-coating. Adv. Funct. Mater. 29, 1809223 (2019).

    Google Scholar 

  11. Jhon, Y. I. et al. Metallic MXene saturable absorber for femtosecond mode-locked lasers. Adv. Mater. 29, 1702496 (2017).

    Google Scholar 

  12. Fredrickson, K. D., Anasori, B., Seh, Z. W., Gogotsi, Y. & Vojvodic, A. Effects of applied potential and water intercalation on the surface chemistry of Ti2C and Mo2C MXenes. J. Phys. Chem. C 120, 28432–28440 (2016).

    CAS  Google Scholar 

  13. Xia, Y. et al. Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes. Nature 557, 409–412 (2018).

    CAS  PubMed  Google Scholar 

  14. Anasori, B., Lukatskaya, M. R. & Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2, 16098 (2017).

    CAS  Google Scholar 

  15. Wang, L., Han, M., Shuck, C. E., Wang, X. & Gogotsi, Y. Adjustable electrochemical properties of solid-solution MXenes. Nano Energy 88, 106308 (2021).

    CAS  Google Scholar 

  16. VahidMohammadi, A., Rosen, J. & Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 372, abf1581 (2021). A comprehensive review of the extensive applications of MXenes in the past decade.

    Google Scholar 

  17. Peng, J. H., Chen, X. Z., Ong, W. J., Zhao, X. J. & Li, N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019).

    CAS  Google Scholar 

  18. Li, Z. & Wu, Y. 2D early transition metal carbides (MXenes) for catalysis. Small 15, e1804736 (2019).

    PubMed  Google Scholar 

  19. Iqbal, A. et al. Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene). Science 369, 446–450 (2020).

    CAS  PubMed  Google Scholar 

  20. Shahzad, F. et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016).

    CAS  PubMed  Google Scholar 

  21. Meng, Z., Stolz, R. M., Mendecki, L. & Mirica, K. A. Electrically-transduced chemical sensors based on two-dimensional nanomaterials. Chem. Rev. 119, 478–598 (2019).

    CAS  PubMed  Google Scholar 

  22. Kim, S. J. et al. Metallic Ti3C2Tx MXene gas sensors with ultrahigh signal-to-noise ratio. ACS Nano 12, 986–993 (2018).

    CAS  PubMed  Google Scholar 

  23. Agresti, A. et al. Titanium-carbide MXenes for work function and interface engineering in perovskite solar cells. Nat. Mater. 18, 1228–1234 (2019).

    CAS  PubMed  Google Scholar 

  24. Dong, Y. C. et al. Metallic MXenes: A new family of materials for flexible triboelectric nanogenerators. Nano Energy 44, 103–110 (2018).

    CAS  Google Scholar 

  25. Zhang, Y. Z. et al. MXene hydrogels: fundamentals and applications. Chem. Soc. Rev. 49, 7229–7251 (2020).

    CAS  PubMed  Google Scholar 

  26. Huang, K., Li, Z., Lin, J., Han, G. & Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 47, 5109–5124 (2018).

    CAS  PubMed  Google Scholar 

  27. Shuck, C. E. et al. Scalable synthesis of Ti3C2Tx MXene. Adv. Eng. Mater. 22, 1901241 (2020).

    CAS  Google Scholar 

  28. Anasori, B. et al. Two-dimensional, ordered, double transition metals carbides (MXenes). ACS Nano 9, 9507–9516 (2015). This is the first study demonstrating the synthesis of double transition metals MXenes via the HF etchant.

    CAS  PubMed  Google Scholar 

  29. Rigby, M. T. et al. Synthesis of new M-layer solid-solution 312 MAX phases (Ta1−xTix)3AlC2 (x = 0.4, 0.62, 0.75, 0.91 or 0.95), and their corresponding MXenes. RSC Adv. 11, 3110–3114 (2021).

    CAS  Google Scholar 

  30. Han, M. K. et al. Tailoring electronic and optical properties of MXenes through forming solid solutions. J. Am. Chem. Soc. 142, 19110–19118 (2020).

    CAS  PubMed  Google Scholar 

  31. Tao, Q. et al. Two-dimensional Mo1.33C MXene with divacancy ordering prepared from parent 3D laminate with in-plane chemical ordering. Nat. Commun. 8, 14949 (2017).

    PubMed  PubMed Central  Google Scholar 

  32. Shekhirev, M., Shuck, C. E., Sarycheva, A. & Gogotsi, Y. Characterization of MXenes at every step, from their precursors to single flakes and assembled films. Prog. Mater. Sci. 120, 100757 (2020).

    Google Scholar 

  33. Kamysbayev, V. et al. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science 369, 979–983 (2020).

    CAS  PubMed  Google Scholar 

  34. Li, M. et al. Halogenated Ti3C2 MXenes with electrochemically active terminals for high-performance zinc ion batteries. ACS Nano 15, 1077–1085 (2021). This is the first study demonstrating the synthesis of isostoichiometric MXenes terminated with the uniform halide.

    CAS  PubMed  Google Scholar 

  35. Li, Y. et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nat. Mater. 19, 894–899 (2020).

    CAS  PubMed  Google Scholar 

  36. Nemani, S. K. et al. High-entropy 2D carbide MXenes: TiVNbMoC3 and TiVCrMoC3. ACS Nano 15, 12815–12825 (2021).

    CAS  Google Scholar 

  37. Pang, J. et al. Applications of 2D MXenes in energy conversion and storage systems. Chem. Soc. Rev. 48, 72–133 (2019).

    CAS  PubMed  Google Scholar 

  38. Abdolhosseinzadeh, S., Jiang, X., Zhang, H., Qiu, J. & Zhang, C. J. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 48, 214–240 (2021).

    CAS  Google Scholar 

  39. Ming, F., Liang, H., Huang, G., Bayhan, Z. & Alshareef, H. N. MXenes for rechargeable batteries beyond the lithium-ion. Adv. Mater. 33, 2004039 (2021).

    CAS  Google Scholar 

  40. Sarycheva, A. & Gogotsi, Y. Raman spectroscopy analysis of the structure and surface chemistry of Ti3C2Tx MXene. Chem. Mater. 32, 3480–3488 (2020).

    CAS  Google Scholar 

  41. Griffith, K. J. et al. Bulk and surface chemistry of the niobium MAX and MXene phases from multinuclear solid-state NMR spectroscopy. J. Am. Chem. Soc. 142, 18924–18935 (2020).

    CAS  PubMed  Google Scholar 

  42. Maleski, K., Mochalin, V. N. & Gogotsi, Y. Dispersions of two-dimensional titanium carbide MXene in organic solvents. Chem. Mater. 29, 1632–1640 (2017).

    CAS  Google Scholar 

  43. Zhang, Q. et al. High concentration of Ti3C2Tx MXene in organic solvent. ACS Nano 15, 5249–5262 (2021).

    CAS  PubMed  Google Scholar 

  44. VahidMohammadi, A., Hadjikhani, A., Shahbazmohamadi, S. & Beidaghi, M. Two-dimensional vanadium carbide (MXene) as a high-capacity cathode material for rechargeable aluminum batteries. ACS Nano 11, 11135–11144 (2017).

    CAS  PubMed  Google Scholar 

  45. Garg, R., Agarwal, A. & Agarwal, M. A review on MXene for energy storage application: effect of interlayer distance. Mater. Res. Express 7, ab750d (2020).

    Google Scholar 

  46. Chen, Z. et al. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ. Sci. 14, 3492–3501 (2021).

    CAS  Google Scholar 

  47. Yao, W., He, S., Xue, Y., Zhang, Q. & Xiao, X. V2CTx MXene artificial solid electrolyte interphases toward dendrite-free lithium metal anodes. ACS Sustain. Chem. Eng. 9, 9961–9969 (2021).

    CAS  Google Scholar 

  48. Fei, M. et al. Polybenzimidazole/Mxene composite membranes for intermediate temperature polymer electrolyte membrane fuel cells. Nanotechnology 29, 035403 (2017).

    Google Scholar 

  49. Zhang, F., Guo, X., Xiong, P., Zhang, J. & Wang, G. Interface engineering of MXene composite separator for high-performance Li–Se and Na–Se batteries. Adv. Energy Mater. 10, 2000446 (2020).

    CAS  Google Scholar 

  50. Song, J. et al. Immobilizing polysulfides with MXene-functionalized separators for stable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 8, 29427–29433 (2016).

    CAS  PubMed  Google Scholar 

  51. Zhang, X. et al. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. Engl. 57, 15028–15033 (2018).

    CAS  PubMed  Google Scholar 

  52. Zhang, N. et al. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew. Chem. Int. Ed. Engl. 60, 2861–2865 (2021).

    CAS  PubMed  Google Scholar 

  53. Zhang, C. J. et al. High capacity silicon anodes enabled by MXene viscous aqueous ink. Nat. Commun. 10, 849 (2019).

    PubMed  Google Scholar 

  54. Liang, X., Garsuch, A. & Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. Engl. 54, 3907–3911 (2015).

    CAS  PubMed  Google Scholar 

  55. Gu, J. et al. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 14, 891–898 (2020).

    PubMed  Google Scholar 

  56. Tang, X. et al. MXene-based dendrite-free potassium metal batteries. Adv. Mater. 32, e1906739 (2020).

    PubMed  Google Scholar 

  57. Wei, C. et al. Recent advances of emerging 2D MXene for stable and dendrite‐free metal anodes. Adv. Funct. Mater. 30, 202004613 (2020).

    Google Scholar 

  58. Alhabeb, M. et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 29, 7633–7644 (2017).

    CAS  Google Scholar 

  59. Verger, L. et al. Overview of the synthesis of MXenes and other ultrathin 2D transition metal carbides and nitrides. Curr. Opin. Solid State Mater. Sci. 23, 149–163 (2019).

    CAS  Google Scholar 

  60. Ma, R. et al. Ti3C2Tx MXene for electrode materials of supercapacitors. J. Mater. Chem. A 9, 11501–11529 (2021).

    CAS  Google Scholar 

  61. Gogotsi, Y. & Penner, R. M. Energy storage in nanomaterials–capacitive, pseudocapacitive, or battery-like? ACS Nano 12, 2081–2083 (2018).

    CAS  PubMed  Google Scholar 

  62. Wang, X. et al. Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nat. Commun. 6, 6544 (2015).

    CAS  PubMed  Google Scholar 

  63. Kajiyama, S. et al. Sodium-ion intercalation mechanism in MXene nanosheets. ACS Nano 10, 3334–3341 (2016).

    CAS  PubMed  Google Scholar 

  64. Wang, X. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 4, 241–248 (2019). This is the first study demonstrating the unusual pseudocapacitive performance of MXenes in specific solvent environments.

    CAS  Google Scholar 

  65. Tian, H. J., Zhang, S. L., Meng, Z., He, W. & Han, W. Q. Rechargeable aluminum/iodine battery redox chemistry in ionic liquid electrolyte. ACS Energy Lett. 2, 1170–1176 (2017).

    CAS  Google Scholar 

  66. Mashtalir, O., Lukatskaya, M. R., Zhao, M. Q., Barsoum, M. W. & Gogotsi, Y. Amine-assisted delamination of Nb2C MXene for Li-ion energy storage devices. Adv. Mater. 27, 3501–3506 (2015).

    CAS  PubMed  Google Scholar 

  67. Mashtalir, O. et al. Intercalation and delamination of layered carbides and carbonitrides. Nat. Commun. 4, 1716 (2013).

    PubMed  Google Scholar 

  68. Ghidiu, M. et al. Ion-exchange and cation solvation reactions in Ti3C2 MXene. Chem. Mater. 28, 3507–3514 (2016).

    CAS  Google Scholar 

  69. Lukatskaya, M. R. et al. Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides. Nat. Energy 2, 17105 (2017).

    CAS  Google Scholar 

  70. Liang, G., Mo, F., Ji, X. & Zhi, C. Non-metallic charge carriers for aqueous batteries. Nat. Rev. Mater. 6, 109–123 (2020).

    Google Scholar 

  71. Eames, C. & Islam, M. S. Ion intercalation into two-dimensional transition-metal carbides: global screening for new high-capacity battery materials. J. Am. Chem. Soc. 136, 16270–16276 (2014).

    CAS  PubMed  Google Scholar 

  72. Xie, Y. et al. Role of surface structure on Li-ion energy storage capacity of two-dimensional transition-metal carbides. J. Am. Chem. Soc. 136, 6385–6394 (2014).

    CAS  PubMed  Google Scholar 

  73. Gao, Q. et al. Tracking ion intercalation into layered Ti3C2 MXene films across length scales. Energy Environ. Sci. 13, 2549–2558 (2020).

    CAS  Google Scholar 

  74. Shpigel, N. et al. Direct assessment of nanoconfined water in 2D Ti3C2 electrode interspaces by a surface acoustic technique. J. Am. Chem. Soc. 140, 8910–8917 (2018).

    CAS  PubMed  Google Scholar 

  75. Wang, X. et al. Atomic-scale recognition of surface structure and intercalation mechanism of Ti3C2X. J. Am. Chem. Soc. 137, 2715–2721 (2015).

    CAS  PubMed  Google Scholar 

  76. Li, N. et al. Lattice constant-dependent anchoring effect of MXenes for lithium–sulfur (Li–S) batteries: a DFT study. Nanoscale 11, 8485–8493 (2019).

    CAS  PubMed  Google Scholar 

  77. Gao, X. et al. Maximizing ion accessibility in MXene-knotted carbon nanotube composite electrodes for high-rate electrochemical energy storage. Nat. Commun. 11, 6160 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Li, K. et al. 3D MXene architectures for efficient energy storage and conversion. Adv. Funct. Mater. 30, 202000842 (2020).

    Google Scholar 

  79. Cheng, R. et al. Understanding the lithium storage mechanism of Ti3C2Tx MXene. J. Phys. Chem. C 123, 1099–1109 (2018).

    Google Scholar 

  80. Naguib, M. et al. MXene: a promising transition metal carbide anode for lithium-ion batteries. Electrochem. Commun. 16, 61–64 (2012).

    CAS  Google Scholar 

  81. Aslam, M. K., Niu, Y. & Xu, M. MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv. Energy Mater. 11, 202000681 (2020).

    Google Scholar 

  82. Ma, Y. et al. A highly flexible and sensitive piezoresistive sensor based on MXene with greatly changed interlayer distances. Nat. Commun. 8, 1207 (2017).

    PubMed  PubMed Central  Google Scholar 

  83. Choi, C. et al. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 5, 5–19 (2020).

    Google Scholar 

  84. Wang, X. et al. Titanium carbide MXene shows an electrochemical anomaly in water-in-salt electrolytes. ACS Nano 15, 15274–15284 (2021). This article reports how the solvation behaviour exerts a crucial influence on the electrochemical properties of MXene electrodes.

    CAS  PubMed  Google Scholar 

  85. Yang, C. et al. Aqueous Li-ion battery enabled by halogen conversion–intercalation chemistry in graphite. Nature 569, 245–250 (2019).

    CAS  PubMed  Google Scholar 

  86. Liu, Z. et al. Voltage issue of aqueous rechargeable metal-ion batteries. Chem. Soc. Rev. 49, 180–232 (2020).

    CAS  PubMed  Google Scholar 

  87. Xu, J., Ma, J., Fan, Q., Guo, S. & Dou, S. Recent progress in the design of advanced cathode materials and battery models for high-performance lithium-X (X = O2, S, Se, Te, I2, Br2) batteries. Adv. Mater. 29, 1606454 (2017).

    Google Scholar 

  88. Li, D., Chen, X., Xiang, P., Du, H. & Xiao, B. Chalcogenated-Ti3C2X2 MXene (X = O, S, Se and Te) as a high-performance anode material for Li-ion batteries. Appl. Surf. Sci. 501, 144221 (2020).

    CAS  Google Scholar 

  89. Sun, D. et al. Two-dimensional Ti3C2 as anode material for Li-ion batteries. Electrochem. Commun. 47, 80–83 (2014).

    Google Scholar 

  90. Zhang, H. et al. Synthesis of NaV6O15 nanorods via thermal oxidation of sodium-intercalated 2D V2CTx and their electrochemical properties as anode for lithium-ion batteries. Electrochim. Acta 248, 178–187 (2017).

    CAS  Google Scholar 

  91. He, S., Zhu, Q., Soomro, R. A. & Xu, B. MXene derivatives for energy storage applications. Sustain. Energy Fuels 4, 4988–5004 (2020).

    CAS  Google Scholar 

  92. Su, T. et al. One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution. ChemSusChem 11, 688–699 (2018).

    CAS  PubMed  Google Scholar 

  93. Byeon, A. et al. Molybdenum oxide/carbon composites derived from the CO2 oxidation of Mo2CTx (MXene) for lithium ion battery anodes. Electrochim. Acta 258, 979–987 (2017).

    CAS  Google Scholar 

  94. Tang, J. Y. et al. MXene derived TiS2 nanosheets for high-rate and long-life sodium-ion capacitors. Energy Storage Mater. 26, 550–559 (2020).

    Google Scholar 

  95. Dong, Y., Shi, H. & Wu, Z. S. Recent advances and promise of MXene-based nanostructures for high-performance metal ion batteries. Adv. Funct. Mater. 30, 202000706 (2020).

    Google Scholar 

  96. Ridley, P. et al. MXene-derived bilayered vanadium oxides with enhanced stability in Li-ion batteries. ACS Appl. Energy Mater. 3, 10892–10901 (2020).

    CAS  Google Scholar 

  97. Wyatt, B. C., Rosenkranz, A. & Anasori, B. 2D MXenes: tunable mechanical and tribological properties. Adv. Mater. 33, e2007973 (2021).

    PubMed  Google Scholar 

  98. Guo, Z., Zhou, J., Si, C. & Sun, Z. Flexible two-dimensional Tin+1Cn (n = 1, 2 and 3) and their functionalized MXenes predicted by density functional theories. Phys. Chem. Chem. Phys. 17, 15348–15354 (2015).

    CAS  PubMed  Google Scholar 

  99. Chakraborty, P., Das, T., Nafday, D., Boeri, L. & Saha-Dasgupta, T. Manipulating the mechanical properties of Ti2C MXene: Effect of substitutional doping. Phys. Rev. B 95, 184106 (2017).

    Google Scholar 

  100. Gao, L. F. et al. MXene/polymer membranes: synthesis, properties, and emerging applications. Chem. Mater. 32, 1703–1747 (2020).

    CAS  Google Scholar 

  101. Carey, M. & Barsoum, M. W. MXene polymer nanocomposites: a review. Mater. Today Adv. 9, 100120 (2021).

    CAS  Google Scholar 

  102. Boota, M. et al. Pseudocapacitive electrodes produced by oxidant-free polymerization of pyrrole between the layers of 2D titanium carbide (MXene). Adv. Mater. 28, 1517–1522 (2016).

    CAS  PubMed  Google Scholar 

  103. Li, J. M. et al. MXene-conducting polymer electrochromic microsupercapacitors. Energy Storage Mater. 20, 455–461 (2019).

    Google Scholar 

  104. Ling, Z. et al. Flexible and conductive MXene films and nanocomposites with high capacitance. Proc. Natl Acad. Sci. USA 111, 16676–16681 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Pan, Q. W. et al. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 1, 395–402 (2019).

    CAS  Google Scholar 

  106. Wu, W., Zhao, W., Sun, Q., Yu, B. & Qu, J. Surface treatment of two dimensional MXene for poly(vinylidene fluoride) nanocomposites with tunable dielectric permittivity. Compos. Commun. 23, 100562 (2020).

    Google Scholar 

  107. Yang, T. et al. Excellent electrolyte-electrode interface stability enabled by inhibition of anion mobility in hybrid gel polymer electrolyte based Li–O2 batteries. J. Membr. Sci. 604, 118051 (2020).

    CAS  Google Scholar 

  108. Zhang, J. K. et al. Sulfonated Ti3C2Tx to construct proton transfer pathways in polymer electrolyte membrane for enhanced conduction. Solid State Ion. 310, 100–111 (2017).

    CAS  Google Scholar 

  109. Xue, P. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem. Int. Ed. 60, 3390–3396 (2020).

    Google Scholar 

  110. Zhang, Y. Z. et al. MXenes stretch hydrogel sensor performance to new limits. Sci. Adv. 4, eaat0098 (2018).

    PubMed  PubMed Central  Google Scholar 

  111. Zhang, C. F. J. et al. Oxidation stability of colloidal two-dimensional titanium carbides (MXenes). Chem. Mater. 29, 4848–4856 (2017).

    CAS  Google Scholar 

  112. Hayashi, A. et al. A sodium-ion sulfide solid electrolyte with unprecedented conductivity at room temperature. Nat. Commun. 10, 5266 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Liu, W. et al. Enhancing ionic conductivity in composite polymer electrolytes with well-aligned ceramic nanowires. Nat. Energy 2, 17035 (2017).

    CAS  Google Scholar 

  114. Liu, Y., Zhang, J., Zhang, X., Li, Y. & Wang, J. Ti3C2Tx filler effect on the proton conduction property of polymer electrolyte membrane. ACS Appl. Mater. Interfaces 8, 20352–20363 (2016).

    CAS  PubMed  Google Scholar 

  115. Liu, W. et al. Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett. 15, 2740–2745 (2016).

    Google Scholar 

  116. Rusong et al. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. 120, 6820–6877 (2019).

    Google Scholar 

  117. Choudhury, S. et al. Solid-state polymer electrolytes for high-performance lithium metal batteries. Nat. Commun. 10, 4398 (2019).

    PubMed  PubMed Central  Google Scholar 

  118. Wyatt, B. C. et al. High-temperature stability and phase transformations of titanium carbide (Ti3C2Tx) MXene. J. Phys. Condens. Matter 33, 224002 (2021).

    CAS  Google Scholar 

  119. Seredych, M. et al. High-temperature behavior and surface chemistry of carbide MXenes studied by thermal analysis. Chem. Mater. 31, 3324–3332 (2019).

    CAS  Google Scholar 

  120. Zhao, C. et al. A high-energy and long-cycling lithium–sulfur pouch cell via a macroporous catalytic cathode with double-end binding sites. Nat. Nanotechnol. 16, 166–173 (2021).

    CAS  PubMed  Google Scholar 

  121. Dong, Y. et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12, 2381–2388 (2018).

    CAS  PubMed  Google Scholar 

  122. Sun, C. et al. Ti3C2Tx MXene interface layer driving ultra-stable lithium-iodine batteries with both high iodine content and mass loading. ACS Nano 14, 1176–1184 (2020). This study demonstrates that the MXene interface layer effectively inhibits the shuttle effect in lithium–iodine batteries and significantly increases iodine loading.

    CAS  PubMed  Google Scholar 

  123. Tang, X. et al. High-performance quasi-solid-state MXene-based Li–I batteries. ACS Cent. Sci. 5, 365–373 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Jiao, L. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium–sulfur batteries. Adv. Energy Mater. 9, 1900219 (2019).

    Google Scholar 

  125. Dewei et al. Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017).

    Google Scholar 

  126. Li, X., Li, N., Huang, Z., Chen, Z. & Zhi, C. Confining aqueous Zn–Br halide redox chemistry by Ti3C2Tx MXene. ACS Nano 15, 1718–1726 (2021). This is the first study demonstrating an effective electrodeposition process for liquid Br2 loading in MXene interlayer.

    CAS  PubMed  Google Scholar 

  127. Wang, X. et al. Strain engineering of a MXene/CNT hierarchical porous hollow microsphere electrocatalyst for a high-efficiency lithium polysulfide conversion process. Angew. Chem. Int. Ed. Engl. 60, 2371–2378 (2021).

    CAS  PubMed  Google Scholar 

  128. Bao, W. Z. et al. Boosting performance of Na–S batteries using sulfur-doped Ti3C2Tx MXene nanosheets with a strong affinity to sodium polysulfides. ACS Nano 13, 11500–11509 (2019).

    CAS  PubMed  Google Scholar 

  129. Zheng, J. et al. Reversible epitaxial electrodeposition of metals in battery anodes. Science 366, 645–648 (2019).

    CAS  PubMed  Google Scholar 

  130. Zhao, C. Z. et al. An ion redistributor for dendrite-free lithium metal anodes. Sci. Adv. 4, eaat3446 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Lee, J. H. et al. Dendrite-free Zn electrodeposition triggered by interatomic orbital hybridization of Zn and single vacancy carbon defects for aqueous Zn-based flow batteries. Energy Environ. Sci. 13, 2839–2848 (2020).

    CAS  Google Scholar 

  132. Wei, C. et al. Room-temperature liquid metal confined in MXene paper as a flexible, freestanding, and binder-free anode for next-generation lithium-ion batteries. Small 15, e1903214 (2019).

    PubMed  Google Scholar 

  133. Yang, D. et al. Mechanisms of the planar growth of lithium metal enabled by the 2D lattice confinement from a Ti3C2Tx MXene intermediate layer. Adv. Funct. Mater. 31, 202010987 (2021).

    Google Scholar 

  134. Tian, Y. et al. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano 13, 11676–11685 (2019).

    CAS  PubMed  Google Scholar 

  135. He, X. et al. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem. Int. Ed. 59, 16705–16711 (2020).

    CAS  Google Scholar 

  136. Greaves, M., Barg, S. & Bissett, M. A. MXene-based anodes for metal-ion batteries. Batter. Supercaps 3, 214–235 (2020).

    CAS  Google Scholar 

  137. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    CAS  Google Scholar 

  138. Yufit, V. et al. Operando visualization and multi-scale tomography studies of dendrite formation and dissolution in zinc batteries. Joule 3, 485–502 (2019).

    Google Scholar 

  139. Sang, X. et al. Atomic defects in monolayer titanium carbide (Ti3C2Tx) MXene. ACS Nano 10, 9193–9200 (2016).

    CAS  PubMed  Google Scholar 

  140. Sang, X. et al. In situ atomistic insight into the growth mechanisms of single layer 2D transition metal carbides. Nat. Commun. 9, 2266 (2018).

    PubMed  PubMed Central  Google Scholar 

  141. Jiang, H., Tan, P., Liu, M., Zeng, Y. & Zhao, T. Unraveling the positive roles of point defects on carbon surfaces in nonaqueous lithium–oxygen batteries. J. Phys. Chem. C 120, 18394–18402 (2016).

    CAS  Google Scholar 

  142. Wang, S. H. et al. Tuning wettability of molten lithium via a chemical strategy for lithium metal anodes. Nat. Commun. 10, 4930 (2019).

    PubMed  PubMed Central  Google Scholar 

  143. Chi, X. et al. A highly stable and flexible zeolite electrolyte solid-state Li–air battery. Nature 592, 551–557 (2021).

    CAS  PubMed  Google Scholar 

  144. Louli, A. J. et al. Optimizing cycling conditions for anode-free lithium metal cells. J. Electrochem. Soc. 168, 020515 (2021).

    CAS  Google Scholar 

  145. Zheng, J. et al. Regulating electrodeposition morphology in high-capacity aluminium and zinc battery anodes using interfacial metal–substrate bonding. Nat. Energy 6, 398–406 (2021).

    CAS  Google Scholar 

  146. Zhang, J. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 32, 2001093 (2020).

    CAS  Google Scholar 

  147. Zhou, T. et al. Super-tough MXene-functionalized graphene sheets. Nat. Commun. 11, 2077 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Wan, S. et al. Strong sequentially bridged MXene sheets. Proc. Natl Acad. Sci. USA 117, 27154–27161 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Shi, H. et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 14, 8678–8688 (2020).

    CAS  PubMed  Google Scholar 

  150. Shi, H. et al. Conducting and lithiophilic MXene/graphene framework for high-capacity, dendrite-free lithium–metal anodes. ACS Nano 13, 14308–14318 (2019).

    CAS  PubMed  Google Scholar 

  151. Zhang, D., Wang, S., Li, B., Gong, Y. & Yang, S. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 31, 1901820 (2019).

    Google Scholar 

  152. Zhang, X. et al. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem. Int. Ed. Engl. 57, 15028–15033 (2018).

    CAS  PubMed  Google Scholar 

  153. Bu, F., Zagho, M. M., Ibrahim, Y., Ma, B. & Zhao, D. Porous MXenes: synthesis, structures, and applications. Nano Today 30, 100803 (2019).

    Google Scholar 

  154. Guo, Y. et al. An autotransferable g-C3N4 Li+-modulating layer toward stable lithium anodes. Adv. Mater. 31, 1900342 (2019).

    Google Scholar 

  155. Xie, X. S. et al. Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes. Energy Environ. Sci. 13, 503–510 (2020).

    CAS  Google Scholar 

  156. Lopez, J. et al. Effects of polymer coatings on electrodeposited lithium metal. J. Am. Chem. Soc. 140, 11735–11744 (2018).

    CAS  PubMed  Google Scholar 

  157. Wang, F. et al. Highly reversible zinc metal anode for aqueous batteries. Nat. Mater. 17, 543–549 (2018).

    CAS  PubMed  Google Scholar 

  158. Ma, J., Liu, M., He, Y. & Zhang, J. Iodine redox chemistry in rechargeable batteries. Angew. Chem. Int. Ed. Engl. 60, 12636–12647 (2021).

    CAS  PubMed  Google Scholar 

  159. Bai, S., Liu, X., Zhu, K., Wu, S. & Zhou, H. Metal–organic framework-based separator for lithium–sulfur batteries. Nat. Energy 1, 16094 (2016).

    CAS  Google Scholar 

  160. Yang, C. et al. Unique aqueous Li-ion/sulfur chemistry with high energy density and reversibility. Proc. Natl Acad. Sci. USA 114, 6197–6202 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Liang, X., Garsuch, A. & Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew. Chem. Int. Ed. Engl. 127, 3979–3983 (2015).

    Google Scholar 

  162. Liu, X. B. A., Shao, X. F., Li, F. & Zhao, M. W. Anchoring effects of S-terminated Ti2C MXene for lithium-sulfur batteries: A first-principles study. Appl. Surf. Sci. 455, 522–526 (2018).

    CAS  Google Scholar 

  163. Rao, D. W. et al. Mechanism on the improved performance of lithium sulfur batteries with MXene-based additives. J. Phys. Chem. C 121, 11047–11054 (2017).

    CAS  Google Scholar 

  164. Zhao, Q., Zhu, Q., Liu, Y. & Xu, B. Status and prospects of MXene-based lithium–sulfur batteries. Adv. Funct. Mater. 31, 2100457 (2021).

    CAS  Google Scholar 

  165. Tang, H. et al. A robust, freestanding MXene-sulfur conductive paper for long-lifetime Li–S batteries. Adv. Funct. Mater. 29, 1901907 (2019).

    Google Scholar 

  166. Wang, D. et al. A general atomic surface modification strategy for improving anchoring and electrocatalysis behavior of Ti3C2T2 MXene in lithium–sulfur batteries. ACS Nano 13, 11078–11086 (2019). This article reports the electrocatalysis function of Ti3C2T2 MXene for lithium–sulfur batteries.

    CAS  PubMed  Google Scholar 

  167. Li, G. et al. Highly efficient Nb2C MXene cathode catalyst with uniform O-terminated surface for lithium–oxygen batteries. Adv. Energy Mater. 11, 2002721 (2020).

    Google Scholar 

  168. Huang, H. et al. Highly efficient removal of iodine ions using MXene-PDA-Ag2Ox composites synthesized by mussel-inspired chemistry. J. Colloid Interface Sci. 567, 190–201 (2020).

    CAS  PubMed  Google Scholar 

  169. Jia, X., Liu, C., Neale, Z. G., Yang, J. & Cao, G. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem. Rev. 120, 7795–7866 (2020).

    CAS  PubMed  Google Scholar 

  170. Xue, W. J. et al. Ultra-high-voltage Ni-rich layered cathodes in practical Li metal batteries enabled by a sulfonamide-based electrolyte. Nat. Energy 6, 495–505 (2021).

    CAS  Google Scholar 

  171. Chae, S., Ko, M., Kim, K., Ahn, K. & Cho, J. Confronting issues of the practical implementation of Si anode in high-energy lithium-ion batteries. Joule 1, 47–60 (2017).

    CAS  Google Scholar 

  172. Li, Y., Huang, S., Wei, C., Wu, C. & Mochalin, V. N. Adhesion of two-dimensional titanium carbides (MXenes) and graphene to silicon. Nat. Commun. 10, 3014 (2019).

    PubMed  PubMed Central  Google Scholar 

  173. Zhang, Y. et al. MXene/Si@SiOx@C layer-by-layer superstructure with autoadjustable function for superior stable lithium storage. ACS Nano 13, 2167–2175 (2019).

    CAS  PubMed  Google Scholar 

  174. Luo, S. et al. Nanoscale parallel circuitry based on interpenetrating conductive assembly for flexible and high-power zinc ion battery. Adv. Funct. Mater. 29, 1901336 (2019).

    Google Scholar 

  175. Hui, X., Zhao, R., Zhang, P., Li, C. & Yin, L. Low-temperature reduction strategy synthesized Si/Ti3C2 MXene composite anodes for high-performance Li-ion batteries. Adv. Energy Mater. 9, 1901065 (2019).

    Google Scholar 

  176. Chen, C. et al. MoS2-on-MXene heterostructures as highly reversible anode materials for lithium-ion batteries. Angew. Chem. Int. Ed. 57, 1846–1850 (2018).

    CAS  Google Scholar 

  177. Zhu, X. et al. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTx MXene. ACS Nano 15, 2971–2983 (2021).

    CAS  PubMed  Google Scholar 

  178. Vaghasiya, J. V., Mayorga-Martinez, C., Vyskoil, J., Sofer, Z. & Pumera, M. Integrated biomonitoring sensing with wearable asymmetric supercapacitors based on Ti3C2 MXene and 1T-phase WS2 nanosheets. Adv. Funct. Mater. 30, 2003673 (2020).

    CAS  Google Scholar 

  179. Couly, C. et al. Asymmetric flexible MXene-reduced graphene oxide micro-supercapacitor. Adv. Electron. Mater. 4, 1700339 (2017).

    Google Scholar 

  180. Zhang, C. J. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 10, 1795 (2019).

    PubMed  Google Scholar 

  181. Sun, L., Song, G., Sun, Y., Fu, Q. & Pan, C. MXene/N-doped carbon foam with three-dimensional hollow neuron-like architecture for freestanding, highly compressible all solid-state supercapacitors. ACS Appl. Mater. Interfaces 12, 44777–44788 (2020).

    CAS  PubMed  Google Scholar 

  182. Han, M. K. et al. Anisotropic MXene aerogels with a mechanically tunable ratio of electromagnetic wave reflection to absorption. Adv. Opt. Mater. 7, 201900267 (2019).

    Google Scholar 

  183. Orangi, J., Hamade, F., Davis, V. A. & Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 14, 640–650 (2019).

    Google Scholar 

  184. Schwartz, J. J. & Boydston, A. J. Multimaterial actinic spatial control 3D and 4D printing. Nat. Commun. 10, 791 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  185. Shuck, C. E. & Gogotsi, Y. Taking MXenes from the lab to commercial products. Chem. Eng. J. 401, 125786 (2020). This article distils the barriers to moving MXenes from the laboratory to commercial use and offers prospects for future research.

    CAS  Google Scholar 

  186. Jolly, S., Paranthaman, M. P. & Naguib, M. Synthesis of Ti3C2Tz MXene from low-cost and environmentally friendly precursors. Mater. Today Adv. 10, 100139 (2021).

    CAS  Google Scholar 

  187. Shuck, C. E. et al. Safe synthesis of MAX and MXene: guidelines to reduce risk during synthesis. ACS Chem. Health Saf. 28, 326–338 (2021).

    CAS  Google Scholar 

  188. Pang, S. Y. et al. Universal strategy for HF-free facile and rapid synthesis of two-dimensional MXenes as multifunctional energy materials. J. Am. Chem. Soc. 141, 9610–9616 (2019). This study highlights the green synthesis of MXenes with a thermal-assisted electrochemical etching protocol based on the HF-free etchant.

    CAS  PubMed  Google Scholar 

  189. Kim, Y. J. et al. Etching mechanism of monoatomic aluminum layers during MXene synthesis. Chem. Mater. 33, 6346–6355 (2021).

    CAS  Google Scholar 

  190. Mathis, T. S. et al. Modified MAX phase synthesis for environmentally stable and highly conductive Ti3C2 MXene. ACS Nano 15, 6420–6429 (2021).

    CAS  PubMed  Google Scholar 

  191. Iqbal, A., Hong, J., Ko, T. Y. & Koo, C. M. Improving oxidation stability of 2D MXenes: synthesis, storage media, and conditions. Nano Converg. 8, 9 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  192. Huang, S. & Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 58, 1958–1966 (2019).

    CAS  PubMed  Google Scholar 

  193. Liu, Y. et al. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv. Funct. Mater. 31, 2008033 (2020).

    Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R&D Program of China under project 2019YFA0705104 and a grant from City University of Hong Kong (9667165). C.E.S. and Y.G. were supported by a grant DMR-2041050 from the US National Science Foundation.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to writing and editing the manuscript. X.L. and Z.H. contributed equally to this work.

Corresponding authors

Correspondence to Yury Gogotsi or Chunyi Zhi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Chemistry thanks C. Birkel, Y. Gao and L. Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Faradic reaction

An electrochemical process that follows Faraday’s law where charges are transferred.

Etchant

Chemical substance that can remove the A layers from the MAX.

Shuttle effect

The diffusion backwards and forwards of reaction species between electrodes.

Density functional theory

(DFT). A computational quantum mechanical modelling method used to investigate the electronic structure of molecules and bulk materials.

Rocking chair mechanism

A battery operation principle based on the reversible shuttle of charge carriers between electrodes.

Adatoms

An atom that lies on a crystal surface. Used as a short form for adsorbed atom.

Tribological

The study of the science and technology of interacting surfaces in relative motion.

Wettability

The tendency of one fluid to spread on or adhere to a solid surface in the presence of other immiscible fluids.

Hydrogen evolution reaction

(HER). The production of hydrogen through the process of water electrolysis or electrolyte decomposition.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, X., Huang, Z., Shuck, C.E. et al. MXene chemistry, electrochemistry and energy storage applications. Nat Rev Chem 6, 389–404 (2022). https://doi.org/10.1038/s41570-022-00384-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41570-022-00384-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing