Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Berry curvature dipole senses topological transition in a moiré superlattice

Abstract

Topological aspects of the electron wave function—including the Berry curvature and Chern number—play a crucial role in determining the physical properties of materials. Although the Berry curvature and its effects in materials have been studied1,2, detecting changes in the Chern number can be challenging, particularly changes in the valley Chern type. In this regard, twisted double bilayer graphene3,4,5,6,7 has emerged as a promising platform to gain electrical control over the Berry curvature hotspots8 and the valley Chern numbers of topological flat bands9,10. In addition, strain-induced breaking of the threefold rotation symmetry leads to a non-zero first moment of Berry curvature (called the Berry curvature dipole)11. Here we show that a sign change in the Berry curvature dipole detects topological transitions in the bands. In twisted double bilayer graphene, the perpendicular electric field simultaneously tunes the valley Chern number and Berry curvature dipole, providing a tunable system to probe the topological transitions. Furthermore, we find hysteresis in the transport response that is caused by switching of the electric polarization. This holds promise for next-generation Berry-curvature-based memory devices. Our technique can be emulated in three-dimensional topological systems to probe topological transitions governed by parameters such as pressure or anisotropic strain.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Strain-mediated NLH effect in TDBG.
Fig. 2: Longitudinal and NLH voltages in TDBG.
Fig. 3: Estimation of BCD and its sign change across a topological transition.
Fig. 4: Hysteresis in the NLH and longitudinal voltages.

Data availability

Source data are provided with this paper. The experimental data used in the figures of the main text are available at Zenodo47. Additional data related to this study are available from the corresponding authors upon reasonable request.

Code availability

The code that supports the findings of this study is available from the corresponding authors upon reasonable request.

References

  1. Xiao, D., Chang, M.-C. & Niu, Q. Berry phase effects on electronic properties. Rev. Mod. Phys. 82, 1959–2007 (2010).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  2. Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

    ADS  Article  Google Scholar 

  3. Burg, G. W. et al. Correlated insulating states in twisted double bilayer graphene. Phys. Rev. Lett. 123, 197702 (2019).

    ADS  Article  Google Scholar 

  4. Shen, C. et al. Correlated states in twisted double bilayer graphene. Nat. Phys. 16, 520–525 (2020).

    Article  Google Scholar 

  5. Adak, P. C. et al. Tunable bandwidths and gaps in twisted double bilayer graphene on the verge of correlations. Phys. Rev. B 101, 125428 (2020).

    ADS  Article  Google Scholar 

  6. Cao, Y. et al. Tunable correlated states and spin-polarized phases in twisted bilayer–bilayer graphene. Nature 583, 215–220 (2020).

    ADS  Article  Google Scholar 

  7. Liu, X. et al. Tunable spin-polarized correlated states in twisted double bilayer graphene. Nature 583, 221–225 (2020).

    ADS  Article  Google Scholar 

  8. Sinha, S. et al. Bulk valley transport and Berry curvature spreading at the edge of flat bands. Nat. Commun. 11, 5548 (2020).

    ADS  Article  Google Scholar 

  9. Koshino, M. Band structure and topological properties of twisted double bilayer graphene. Phys. Rev. B 99, 235406 (2019).

    ADS  Article  Google Scholar 

  10. Zhang, Y.-H., Mao, D., Cao, Y., Jarillo-Herrero, P. & Senthil, T. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    ADS  Article  Google Scholar 

  11. Fu, L. & Sodemann, I. Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015).

    ADS  Article  Google Scholar 

  12. Ma, Q., Grushin, A. G. & Burch, K. S. Topology and geometry under the nonlinear electromagnetic spotlight. Nat. Mater. 20, 1601–1614 (2021).

    ADS  Article  Google Scholar 

  13. Du, Z. Z., Lu, H.-Z. & Xie, X. C. Nonlinear Hall effects. Nat. Rev. Phys. 3, 744–752 (2021).

    Article  Google Scholar 

  14. Facio, J. I. et al. Strongly enhanced Berry dipole at topological phase transitions in BiTeI. Phys. Rev. Lett. 121, 246403 (2018).

    ADS  Article  Google Scholar 

  15. Hu, J.-X., Zhang, C.-P., Xie, Y.-M. & Law, K. T. Nonlinear Hall effects in strained twisted bilayer WSe2. Preprint at https://arxiv.org/abs/2004.14140 (2020).

  16. Song, J. C. W., Samutpraphoot, P. & Levitov, L. S. Topological Bloch bands in graphene superlattices. Proc. Natl Acad. Sci. USA 112, 10879–10883 (2015).

    ADS  MathSciNet  MATH  Article  Google Scholar 

  17. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    ADS  Article  Google Scholar 

  18. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    ADS  Article  Google Scholar 

  19. Shvetsov, O. O., Esin, V. D., Timonina, A. V., Kolesnikov, N. N. & Deviatov, E. V. Nonlinear Hall effect in three-dimensional Weyl and Dirac semimetals. JETP Lett. 109, 715–721 (2019).

    ADS  Article  Google Scholar 

  20. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    Article  Google Scholar 

  21. Kumar, D. et al. Room-temperature nonlinear Hall effect and wireless radiofrequency rectification in Weyl semimetal TaIrTe4. Nat. Nanotechnol. 16, 421–425 (2021).

    ADS  Article  Google Scholar 

  22. Son, J., Kim, K.-H., Ahn, Y., Lee, H.-W. & Lee, J. Strain engineering of the Berry curvature dipole and valley magnetization in monolayer MoS2. Phys. Rev. Lett. 123, 036806 (2019).

    ADS  Article  Google Scholar 

  23. Ho, S.-C. et al. Hall effects in artificially corrugated bilayer graphene without breaking time-reversal symmetry. Nat. Electron. 4, 116–125 (2021).

    Article  Google Scholar 

  24. Huang, M. et al. Giant nonlinear Hall effect in twisted WSe2. Preprint at https://arxiv.org/abs/2006.05615 (2021).

  25. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    ADS  Article  Google Scholar 

  26. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    ADS  Article  Google Scholar 

  27. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    ADS  Article  Google Scholar 

  28. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    ADS  Article  Google Scholar 

  29. Das, I. et al. Symmetry-broken Chern insulators and Rashba-like Landau-level crossings in magic-angle bilayer graphene. Nat. Phys. 17, 710–714 (2021).

    Article  Google Scholar 

  30. Zhang, C.-P. et al. Giant nonlinear Hall effect in strained twisted bilayer graphene. Preprint at https://arxiv.org/abs/2010.08333 (2020).

  31. Pantaleón, P. A., Low, T. & Guinea, F. Tunable large Berry dipole in strained twisted bilayer graphene. Phys. Rev. B 103, 205403 (2021).

    ADS  Article  Google Scholar 

  32. He, Z. & Weng, H. Giant nonlinear Hall effect in twisted bilayer WTe2. npj Quantum Mater. 6, 101 (2021).

    ADS  Article  Google Scholar 

  33. He, M. et al. Symmetry breaking in twisted double bilayer graphene. Nat. Phys. 17, 26–30 (2021).

    Article  Google Scholar 

  34. Chebrolu, N. R., Chittari, B. L. & Jung, J. Flat bands in twisted double bilayer graphene. Phys. Rev. B 99, 235417 (2019).

    ADS  Article  Google Scholar 

  35. McGilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. 15, 580–584 (2020).

    ADS  Article  Google Scholar 

  36. Kazmierczak, N. P. et al. Strain fields in twisted bilayer graphene. Nat. Mater. 20, 956–963 (2021).

    ADS  Article  Google Scholar 

  37. He, P. et al. Quantum frequency doubling in the topological insulator Bi2Se3. Nat. Commun. 12, 698 (2021).

    ADS  Article  Google Scholar 

  38. Xiao, C., Zhou, H. & Niu, Q. Scaling parameters in anomalous and nonlinear Hall effects depend on temperature. Phys. Rev. B 100, 161403 (2019).

    ADS  Article  Google Scholar 

  39. Du, Z. Z., Wang, C. M., Li, S., Lu, H.-Z. & Xie, X. C. Disorder-induced nonlinear Hall effect with time-reversal symmetry. Nat. Commun. 10, 3047 (2019).

    ADS  Article  Google Scholar 

  40. Mannaï, M. & Haddad, S. Twistronics versus straintronics in twisted bilayers of graphene and transition metal dichalcogenides. Phys. Rev. B 103, L201112 (2021).

    Article  Google Scholar 

  41. Li, Y. et al. Unraveling strain gradient induced electromechanical coupling in twisted double bilayer graphene moiré superlattices. Adv. Mater. 33, 2105879 (2021).

    Article  Google Scholar 

  42. Varma Sangani, L. D. et al. Facile deterministic cutting of 2D materials for twistronics using a tapered fibre scalpel. Nanotechnology 31, 32LT02 (2020).

    Article  Google Scholar 

  43. Bistritzer, R. & MacDonald, A. H. Moiré bands in twisted double-layer graphene. Proc. Natl Acad. Sci. USA 108, 12233–12237 (2011).

    ADS  Article  Google Scholar 

  44. He, W.-Y., Goldhaber-Gordon, D. & Law, K. T. Giant orbital magnetoelectric effect and current-induced magnetization switching in twisted bilayer graphene. Nat. Commun. 11, 1650 (2020).

    ADS  Article  Google Scholar 

  45. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    ADS  Article  Google Scholar 

  46. Zheng, Z. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 588, 71–76 (2020).

    ADS  Article  Google Scholar 

  47. Sinha, S. et al. Experimental data for Berry curvature dipole senses topological transition in a moiré superlattice. Zenodo https://doi.org/10.5281/zenodo.5211285 (2021).

Download references

Acknowledgements

We thank J. Song, A. Pasupathy, S. Todadri, B. Datta, S. Ghosh and S. Mandal for helpful discussions and comments. We thank S. Kanthi R. S., J. Sarkar, K. Maji and R. Dhingra for experimental assistance. M.M.D. acknowledges Nanomission grant SR/NM/NS-45/2016 and DST SUPRA SPR/2019/001247 grant along with the Department of Atomic Energy of Government of India 12-R&D-TFR-5.10-0100 for support. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant no. JPMXP0112101001), and JSPS KAKENHI (grant nos. 19H05790 and JP20H00354). A.A. acknowledges IIT Kanpur (India), Science Engineering and Research Board (SERB) (India), and the Department of Science and Technology (DST) (India) for financial support. A.C. acknowledges the Institute Post-Doctoral fellowship of IIT Kanpur. K. Das acknowledges IIT Kanpur for the Senior Research Fellowship. A.A., A.C. and K. Das also thank CC-IIT Kanpur, for use of the high-performance computing facility. K. Debnath is grateful to the Jawaharlal Nehru Centre for Advanced Scientific Research, India, for a research fellowship. U.V.W. acknowledges support from a JC Bose National Fellowship of SERB-DST.

Author information

Authors and Affiliations

Authors

Contributions

S.S., P.C.A. and L.D.V.S. fabricated the devices. S.S. and P.C.A. performed the measurements and analysed the data. A.C., K. Das and A.A. calculated the band structure and performed the BCD and Chern number calculations. K. Debnath and U.V.W. performed the polarization calculations. K.W. and T.T. grew the hBN crystals. S.S., P.C.A., A.A. and M.M.D. wrote the manuscript with inputs from all the authors. M.M.D. supervised the project.

Corresponding authors

Correspondence to Subhajit Sinha, Amit Agarwal or Mandar M. Deshmukh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Physics thanks Eduardo Castro and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Variation of longitudinal resistance with temperature.

a-c, Variation of longitudinal resistance Rxx with temperature T for filling ν = 0.125 (a), ν = 0 (b) and ν = − 4 (c). The color of the line-plots indicates the corresponding displacement field.

Source data

Extended Data Fig. 2 Scaling of normalized nonlinear Hall voltage \({V}_{xy}^{2\omega }/{({V}_{xx}^{\omega })}^{2}\) with the square of longitudinal conductivity (\({\sigma }_{xx}^{2}\)) for different fillings ν with displacement field as parameter.

a, d, g, j, The variation of nonlinear Hall voltage \({V}_{xy}^{2\omega }\) (blue-colored data points corresponding to the left axis) and longitudinal voltage \({V}_{xx}^{\omega }\) (orange-colored data points corresponding to the right axis) as a function of the displacement field D/ϵ0 for four different fillings. b, e, h, k, The corresponding variation of normalized nonlinear Hall voltage \({V}_{xy}^{2\omega }/{({V}_{xx}^{\omega })}^{2}\) (black-colored data points corresponding to the left axis) and square of longitudinal conductivity \({\sigma }_{xx}^{2}\) (red-colored data points corresponding to the right axis) as a function of the displacement field D/ϵ0, extracted for the same fillings used in a, d, g, and j, respectively. c, f, i, l, The variation of normalized nonlinear Hall voltage \({V}_{xy}^{2\omega }/{({V}_{xx}^{\omega })}^{2}\) with square of longitudinal conductivity \({\sigma }_{xx}^{2}\) plotted parametrically as a function of the displacement field D/ϵ0, using b, e, h, and k, respectively. The displacement field value of data points in V nm−1 is indicated by the color (color bar is shown in top right). The dashed green line and dashed blue line indicate fits to linear scaling in regime-I and regime-II respectively, used to extract BCD. The fillings shown here are ν = 0.112 (a-c), 0.138 (d-f), 0.150 (g-i), and 0.175 (j-l). The light green background and light blue background correspond to regime-I and regime-II, respectively, as discussed in Fig. 3a of the main manuscript. The measurements were performed using a current of 100 nA with a frequency of 177 Hz at a temperature of 1.5 K.

Source data

Extended Data Fig. 3 Scaling of normalized nonlinear Hall voltage \({V}_{xy}^{2\omega }/{({V}_{xx}^{\omega })}^{2}\) with square of longitudinal conductivity (\({\sigma }_{xx}^{2}\)) with temperature as parameter.

a, The variation of nonlinear Hall voltage \({V}_{xy}^{2\omega }\) (blue-colored data points corresponding to the left axis) and longitudinal voltage \({V}_{xx}^{\omega }\) (orange-colored data points corresponding to the right axis) as a function of temperature T for ν = 0.125. b, The corresponding variation of normalized nonlinear Hall voltage \({V}_{xy}^{2\omega }/{({V}_{xx}^{\omega })}^{2}\) (black-colored data points corresponding to the left axis) and square of longitudinal conductivity \({\sigma }_{xx}^{2}\) (red-colored data points corresponding to the right axis) as a function of T, extracted for the same filling used in a. c, The variation of \({V}_{xy}^{2\omega }/{({V}_{xx}^{\omega })}^{2}\) with \({\sigma }_{xx}^{2}\) plotted parametrically as a function of T, using the results in b. The temperature value of data points in Kelvin is indicated by the color. The dashed line indicates a linear fit till 7 K.

Source data

Extended Data Fig. 4 Evolution of Berry curvature dipole (BCD).

a, Dependence of the y-component of BCD on the Energy (E) and inter-layer potential (Δ) at the conduction band side. b, c, Energy dispersion along high symmetry k-paths for Δ = 25 meV (b) and Δ = 30 meV (c) before transition. d, e, Similar energy dispersion for Δ = 38 meV (d) and Δ = 43 meV (e) after transition. The color map shows the Berry curvature value for the flat bands.

Source data

Extended Data Fig. 5 Metastable states and polarization in TDBG.

a, Electronic structure of Graphene-Graphene-hBN shows a band gap of 26 meV at K point. The inset shows the spatial distribution of the wave functions of bands labelled 2 and 3. b, Electric field (E) calculated from the slope of the average macroscopic potential of Graphene-Graphene-hBN in vacuum. c, Evolution and crossing of band 2 and 3 at E = − 0.0039 V/Å and E = 0.0039 V/Å of upper and lower trilayer of hBN-TDBG-hBN as a function of electric field using our rigid band model. d, metastable states for (i) E < − 0.0039 V/Åand (ii) E > 0.0039 V/Å, with nonzero polarization in hBN-TDBG-hBN that are accessible with the electric field.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–25 and Sections I–XIV.

Source data

Source Data Fig. 1

Source data for Fig. 1b–e,g,h.

Source Data Fig. 2

Source data for Fig. 2.

Source Data Fig. 3

Source data for Fig. 3a–h.

Source Data Fig. 4

Source data for Fig. 4.

Source Data Extended Data Fig. 1

Source data for Extended Data Fig. 1.

Source Data Extended Data Fig. 2

Source data for Extended Data Fig. 2.

Source Data Extended Data Fig. 3

Source data for Extended Data Fig. 3.

Source Data Extended Data Fig. 4

Source data for Extended Data Fig. 4b–e.

Source Data Extended Data Fig. 5

Source data for Extended Data Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinha, S., Adak, P.C., Chakraborty, A. et al. Berry curvature dipole senses topological transition in a moiré superlattice. Nat. Phys. (2022). https://doi.org/10.1038/s41567-022-01606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41567-022-01606-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing