Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nonlinear interferometry beyond classical limit enabled by cyclic dynamics

Abstract

Time-reversed evolution has substantial implications in physics, including applications in refocusing of classical waves or spins and fundamental studies such as quantum information scrambling. In quantum metrology, nonlinear interferometry based on time-reversal protocols supports entanglement-enhanced measurements without requiring low-noise detection. Despite the broad interest in this topic, it remains challenging to reverse the quantum dynamics of an interacting many-body system, which is typically realized by an (effective) sign flip of the system’s Hamiltonian. Here we present an approach that is broadly applicable to cyclic systems for implementing nonlinear interferometry without invoking time reversal. As time-reversed dynamics drives a system back to its starting point, we propose to accomplish the same by forcing the system to travel along a ‘closed loop’ instead of explicitly tracing back its antecedent path. Utilizing the quasiperiodic spin mixing dynamics in a three-mode 87Rb atomic spinor condensate, we implement such a closed-loop nonlinear interferometer and achieve a metrological gain of \(5.0{1}_{-0.76}^{+0.76}\) decibels over the classical limit for a total of 26,500 atoms. Our approach unlocks the potential of nonlinear interferometry by allowing the dynamics to penetrate into the deep nonlinear regime, which gives rise to highly entangled non-Gaussian states.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Three-mode nonlinear interferometry based on cyclic dynamics.
Fig. 2: Phase sensitivity.
Fig. 3: The dependence of metrological gain on spin mixing times t1 and t2.

Data availability

Source data (including raw experimental data) are provided with this paper. Source data for Supplementary Figs. 5 and 6 are given in Supplementary Data 1 and 2. All other data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request.

Code availability

The codes are available from the corresponding author upon reasonable request.

References

  1. Eddington, A. S. The Nature of the Physical World (Cambridge Univ. Press, 1928).

  2. Fink, M. et al. Time-reversed acoustics. Rep. Prog. Phys. 63, 1933–1995 (2000).

    ADS  Google Scholar 

  3. Lerosey, G. et al. Time reversal of electromagnetic waves. Phys. Rev. Lett. 92, 193904 (2004).

    ADS  Google Scholar 

  4. Lerosey, G., de Rosny, J., Tourin, A. & Fink, M. Focusing beyond the diffraction limit with far-field time reversal. Science 315, 1120–1122 (2007).

    ADS  Google Scholar 

  5. Hahn, E. L. Spin echoes. Phys. Rev. 80, 580–594 (1950).

    ADS  MATH  Google Scholar 

  6. Kurnit, N. A., Abella, I. D. & Hartmann, S. R. Observation of a photon echo. Phys. Rev. Lett. 13, 567–568 (1964).

    ADS  Google Scholar 

  7. Shenker, S. H. & Stanford, D. Black holes and the butterfly effect. J. High Energy Phys. 2014, 67 (2014).

    MathSciNet  MATH  Google Scholar 

  8. Gärttner, M. et al. Measuring out-of-time-order correlations and multiple quantum spectra in a trapped-ion quantum magnet. Nat. Phys. 13, 781–786 (2017).

    Google Scholar 

  9. Landsman, K. A. et al. Verified quantum information scrambling. Nature 567, 61–65 (2019).

    ADS  Google Scholar 

  10. Lewis-Swan, R. J., Safavi-Naini, A., Bollinger, J. J. & Rey, A. M. Unifying scrambling, thermalization and entanglement through measurement of fidelity out-of-time-order correlators in the Dicke model. Nat. Commun. 10, 1581 (2019).

    ADS  Google Scholar 

  11. Quan, H. T., Song, Z., Liu, X. F., Zanardi, P. & Sun, C. P. Decay of Loschmidt echo enhanced by quantum criticality. Phys. Rev. Lett. 96, 140604 (2006).

    ADS  Google Scholar 

  12. Nie, X. et al. Experimental observation of equilibrium and dynamical quantum phase transitions via out-of-time-ordered correlators. Phys. Rev. Lett. 124, 250601 (2020).

    ADS  Google Scholar 

  13. Lewis-Swan, R. J., Muleady, S. R. & Rey, A. M. Detecting out-of-time-order correlations via quasiadiabatic echoes as a tool to reveal quantum coherence in equilibrium quantum phase transitions. Phys. Rev. Lett. 125, 240605 (2020).

    ADS  Google Scholar 

  14. Davis, E., Bentsen, G. & Schleier-Smith, M. Approaching the Heisenberg limit without single-particle detection. Phys. Rev. Lett. 116, 053601 (2016).

    ADS  Google Scholar 

  15. Fröwis, F., Sekatski, P. & Dür, W. Detecting large quantum Fisher information with finite measurement precision. Phys. Rev. Lett. 116, 090801 (2016).

    ADS  MathSciNet  Google Scholar 

  16. Macrì, T., Smerzi, A. & Pezzè, L. Loschmidt echo for quantum metrology. Phys. Rev. A 94, 010102 (2016).

    ADS  Google Scholar 

  17. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    ADS  Google Scholar 

  18. Pezzè, L., Smerzi, A., Oberthaler, M. K., Schmied, R. & Treutlein, P. Quantum metrology with nonclassical states of atomic ensembles. Rev. Mod. Phys. 90, 035005 (2018).

    ADS  MathSciNet  Google Scholar 

  19. Gross, C., Zibold, T., Nicklas, E., Esteve, J. & Oberthaler, M. K. Nonlinear atom interferometer surpasses classical precision limit. Nature 464, 1165–1169 (2010).

    ADS  Google Scholar 

  20. Riedel, M. F. et al. Atom-chip-based generation of entanglement for quantum metrology. Nature 464, 1170–1173 (2010).

    ADS  Google Scholar 

  21. Lücke, B. et al. Twin matter waves for interferometry beyond the classical limit. Science 334, 773–776 (2011).

    ADS  Google Scholar 

  22. Hosten, O., Engelsen, N. J., Krishnakumar, R. & Kasevich, M. A. Measurement noise 100 times lower than the quantum-projection limit using entangled atoms. Nature 529, 505–508 (2016).

    ADS  MATH  Google Scholar 

  23. Luo, X.-Y. et al. Deterministic entanglement generation from driving through quantum phase transitions. Science 355, 620–623 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  24. Zou, Y.-Q. et al. Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms. Proc. Natl Acad. Sci. USA 115, 6381–6385 (2018).

    ADS  Google Scholar 

  25. Pedrozo-Peñafiel, E. et al. Entanglement on an optical atomic-clock transition. Nature 588, 414–418 (2020).

    ADS  Google Scholar 

  26. Bao, H. et al. Spin squeezing of 1011 atoms by prediction and retrodiction measurements. Nature 581, 159–163 (2020).

    ADS  Google Scholar 

  27. Hume, D. B. et al. Accurate atom counting in mesoscopic ensembles. Phys. Rev. Lett. 111, 253001 (2013).

    ADS  Google Scholar 

  28. Qu, A., Evrard, B., Dalibard, J. & Gerbier, F. Probing spin correlations in a Bose–Einstein condensate near the single-atom level. Phys. Rev. Lett. 125, 033401 (2020).

    ADS  Google Scholar 

  29. Hüper, A. et al. Number-resolved preparation of mesoscopic atomic ensembles. New J. Phys. https://doi.org/10.1088/1367-2630/abd058 (2020).

  30. Hudelist, F. et al. Quantum metrology with parametric amplifier-based photon correlation interferometers. Nat. Commun. 5, 3049 (2014).

    ADS  Google Scholar 

  31. Manceau, M., Leuchs, G., Khalili, F. & Chekhova, M. Detection loss tolerant supersensitive phase measurement with an SU(1,1) interferometer. Phys. Rev. Lett. 119, 223604 (2017).

    ADS  Google Scholar 

  32. Linnemann, D. et al. Quantum-enhanced sensing based on time reversal of nonlinear dynamics. Phys. Rev. Lett. 117, 013001 (2016).

    ADS  Google Scholar 

  33. Linnemann, D. et al. Active SU(1,1) atom interferometry. Quantum Sci. Technol. 2, 044009 (2017).

    ADS  Google Scholar 

  34. Hosten, O., Krishnakumar, R., Engelsen, N. J. & Kasevich, M. A. Quantum phase magnification. Science 352, 1552–1555 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  35. Burd, S. C. et al. Quantum amplification of mechanical oscillator motion. Science 364, 1163–1165 (2019).

    ADS  Google Scholar 

  36. Law, C. K., Pu, H. & Bigelow, N. P. Quantum spins mixing in spinor Bose–Einstein condensates. Phys. Rev. Lett. 81, 5257–5261 (1998).

    ADS  Google Scholar 

  37. Yurke, B., McCall, S. L. & Klauder, J. R. SU(2) and SU(1,1) interferometers. Phys. Rev. A 33, 4033–4054 (1986).

    ADS  Google Scholar 

  38. Gabbrielli, M., Pezzè, L. & Smerzi, A. Spin-mixing interferometry with Bose–Einstein condensates. Phys. Rev. Lett. 115, 163002 (2015).

    ADS  Google Scholar 

  39. Szigeti, S. S., Lewis-Swan, R. J. & Haine, S. A. Pumped-up SU(1,1) interferometry. Phys. Rev. Lett. 118, 150401 (2017).

    ADS  Google Scholar 

  40. Chang, M.-S., Qin, Q., Zhang, W., You, L. & Chapman, M. S. Coherent spinor dynamics in a spin-1 Bose condensate. Nat. Phys. 1, 111–116 (2005).

    Google Scholar 

  41. Zhang, W., Zhou, D. L., Chang, M. S., Chapman, M. S. & You, L. Coherent spin mixing dynamics in a spin-1 atomic condensate. Phys. Rev. A. 72, 013602 (2005).

    ADS  Google Scholar 

  42. Gerving, C. S. et al. Non-equilibrium dynamics of an unstable quantum pendulum explored in a spin-1 Bose–Einstein condensate. Nat. Commun. 3, 1169 (2012).

    ADS  Google Scholar 

  43. Rauer, B. et al. Recurrences in an isolated quantum many-body system. Science 360, 307–310 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  44. Schweigler, T. et al. Decay and recurrence of non-Gaussian correlations in a quantum many-body system. Nat. Phys. 17, 559–563 (2021).

    Google Scholar 

  45. Gessner, M., Smerzi, A. & Pezzè, L. Metrological nonlinear squeezing parameter. Phys. Rev. Lett. 122, 090503 (2019).

    ADS  Google Scholar 

  46. Strobel, H. et al. Fisher information and entanglement of non-Gaussian spin states. Science 345, 424–427 (2014).

    ADS  Google Scholar 

  47. Walmsley, I. & Rabitz, H. Quantum physics under control. Phys. Today 56, 43–49 (2003).

    Google Scholar 

  48. Carleo, G. et al. Machine learning and the physical sciences. Rev. Mod. Phys. 91, 045002 (2019).

    ADS  Google Scholar 

  49. Guo, S.-F. et al. Faster state preparation across quantum phase transition assisted by reinforcement learning. Phys. Rev. Lett. 126, 060401 (2021).

    ADS  Google Scholar 

  50. Lücke, B. et al. Detecting multiparticle entanglement of dicke states. Phys. Rev. Lett. 112, 155304 (2014).

    ADS  Google Scholar 

  51. Hamley, C. D., Gerving, C. S., Hoang, T. M., Bookjans, E. M. & Chapman, M. S. Spin-nematic squeezed vacuum in a quantum gas. Nat. Phys. 8, 305–308 (2012).

    Google Scholar 

Download references

Acknowledgements

We thank F. Chen, Y. Q. Zou, J. L. Yu and M. Xue for helpful discussions. This work is supported by the National Natural Science Foundation of China (NSFC; grant numbers 11654001, U1930201, 91636213 and 91836302), by the Key-Area Research and Development Program of GuangDong Province (grant number 2019B030330001) and by the National Key R&D Program of China (grant nnumbers 2018YFA0306504 and 2018YFA0306503). L.-N.W. acknowledges support from the Deutsche Forschungsgemeinschaft (DFG) via grant no. 163436311.

Author information

Affiliations

Authors

Contributions

L.-N.W. and L.Y. conceived this study. Q.L., J.-H.C., T.-W.M. and S.-F.G. performed the experiment and analysed the data. Q.L., L.-N.W. and X.-W.L. conducted the numerical simulations. Q.L., L.-N.W., M.K.T. and L.Y. wrote the paper.

Corresponding author

Correspondence to Li You.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Paul Griffin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Calibration of quadratic Zeeman shift qt for phase imprinting.

For qt much larger than spin-exchange rate c2, the state will accumulate a spinor phase proportional to interrogation time τ without undergoing noticeable population changes in the three Zeeman sublevels. Following the short-term spin dynamics for 5 ms at q ≈ c2, the encoded phase is transformed into oscillations of 〈ρ0(τ)〉 at frequency 2qt. Blue (orange) dots denote data points measured at microwave detuning of Δ = − 3.1(3.1) MHz for the ‘dressing’ (‘pre-dressing’) pulse. Fitting them with sinusoidal function Eq. (2) in Methods enables the value of qt to be determined. Solid lines display the corresponding fitting curves.

Source data

Extended Data Fig. 2 Implementation of the three-mode linear interferometer.

a, The experimental sequence consists of four steps: initialization of the system in the polar state, linear path splitting with π/4 Rabi rotation around collective spin Lx, phase encoding with generator − N0/2 (N0 denotes the number of atoms in the \(\left|1,0\right\rangle\) component), and linear path recombining with π/2 rotation around − Ly. The dependence of magnetization Lz/N on the phase ϕ is measured in the end. b, Data in the main figure shows results averaged over three measurements, while the solid line is the fitted sinusoidal function curve. Two horizontal black dashed lines denote the bounds of ± 1. The inset presents measured mean value and fluctuation of Lz/N in the vicinity of ϕ = 0 from 50 repetitions. Error bars (invisible in the main figure) denote one standard deviation and the spread of shaded area corresponds to the quantum projection noise for ideal atomic coherent state. Solid line in the inset denotes the result from a linear fit, which is used to calculate the metrological gain.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Supplementary Data 1

Experimental data in Supplementary Fig. 5.

Supplementary Data 2

Experimental data in Supplementary Fig. 6.

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 3

Statistical source data

Source Data Extended Data Fig. 1

Statistical source data

Source Data Extended Data Fig. 2

Statistical source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Wu, LN., Cao, JH. et al. Nonlinear interferometry beyond classical limit enabled by cyclic dynamics. Nat. Phys. 18, 167–171 (2022). https://doi.org/10.1038/s41567-021-01441-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01441-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing