Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Developments in atomic control using ultracold magnetic lanthanides

Abstract

Lanthanide atoms have an unusual electron configuration, with a partially filled shell of f orbitals. This leads to a set of characteristic properties, including large numbers of optical transitions with widely varying wavelengths and transition strengths, anisotropic interaction properties between atoms and with light, and a large magnetic moment and spin space present in the ground state, that enable enhanced control over ultracold atoms and their interactions. These features, in turn, enable new forms of control as well as novel many-body phenomena. Microkelvin temperatures can be reached by narrow-line laser cooling and evaporative cooling through universal dipolar scattering. The properties and tunability of the interatomic interactions have enabled observations of a rotonic dispersion relation, self-bound liquid-like droplets stabilized by quantum fluctuations and supersolid states. Here we describe how the unusual level structure of lanthanide atoms leads to these key features and provide a brief and necessarily partial overview of experimental progress in this rapidly developing field.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Magnetic lanthanide atoms feature an unusual valence electronic structure, with a fully occupied 6s (L = 0) orbital and a partially filled 4f (L = 3) orbital, in a submerged shell configuration.
Fig. 2: Key properties of the laser-cooled magnetic lanthanides and their dipolar strength.
Fig. 3: Observed density of Feshbach resonances in lanthanide atoms.
Fig. 4: Control over large spin space.
Fig. 5: Roton, droplets and the supersolid phase in dipolar gases.

References

  1. 1.

    Chin, C., Grimm, R., Julienne, P. S. & Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 82, 1225–1286 (2010).

    ADS  Google Scholar 

  2. 2.

    Bloch, I., Dalibard, J. & Zwerger, W. Many-body physics with ultracold gases. Rev. Mod. Phys. 80, 885–964 (2008).

    ADS  Google Scholar 

  3. 3.

    Gallagher, T. F. Rydberg Atoms 3 (Cambridge Univ. Press, 2005).

  4. 4.

    Raimond, J. M., Brune, M. & Haroche, S. Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565–582 (2001).

    ADS  MathSciNet  MATH  Google Scholar 

  5. 5.

    Kimble, H. J. Strong interactions of single atoms and photons in cavity qed. Phys. Scr. 1998, 127 (1998).

    Google Scholar 

  6. 6.

    Kotochigova, S. Controlling interactions between highly magnetic atoms with feshbach resonances. Rep. Prog. Phys. 77, 093901 (2014).

    ADS  Google Scholar 

  7. 7.

    Tiesinga, E., Kłos, J., Li, M., Petrov, A. & Kotochigova, S. Relativistic aspects of orbital and magnetic anisotropies in the chemical bonding and structure of lanthanide molecules. New J. Phys. 23, 085007 (2021).

    ADS  Google Scholar 

  8. 8.

    Guo, M. & Pfau, T. A new state of matter of quantum droplets. Front. Phys. 16, 32202 (2021).

    ADS  Google Scholar 

  9. 9.

    Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    ADS  Google Scholar 

  10. 10.

    Wybourne, B. G. & Smentek, L. Optical Spectroscopy of Lanthanides: Magnetic and Hyperfine Interactions (CRC, 2007).

  11. 11.

    Golovizin, A. et al. Inner-shell clock transition in atomic thulium with a small blackbody radiation shift. Nat. Commun. 10, 1724 (2019).

    ADS  Google Scholar 

  12. 12.

    Petersen, N., Trümper, M. & Windpassinger, P. Spectroscopy of the 1,001-nm transition in atomic dysprosium. Phys. Rev. A 101, 042502 (2020).

    ADS  Google Scholar 

  13. 13.

    Patscheider, A. et al. Observation of a narrow inner-shell orbital transition in atomic erbium at 1299 nm. Phys. Rev. Res. 3, 033256 (2021).

    Google Scholar 

  14. 14.

    Ban, H. Y., Jacka, M., Hanssen, J. L., Reader, J. & McClelland, J. J. Laser cooling transitions in atomic erbium. Opt. Express 13, 3185–3195 (2005).

    ADS  Google Scholar 

  15. 15.

    Honda, K. et al. Magneto-optical trapping of Yb atoms and a limit on the branching ratio of the 1P1 state. Phys. Rev. A 59, R934–R937 (1999).

    ADS  Google Scholar 

  16. 16.

    Katori, H., Ido, T., Isoya, Y. & Kuwata-Gonokami, M. Magneto-optical trapping and cooling of strontium atoms down to the photon recoil temperature. Phys. Rev. Lett. 82, 1116–1119 (1999).

    ADS  Google Scholar 

  17. 17.

    Kuwamoto, T., Honda, K., Takahashi, Y. & Yabuzaki, T. Magneto-optical trapping of Yb atoms using an intercombination transition. Phys. Rev. A 60, R745–R748 (1999).

    ADS  Google Scholar 

  18. 18.

    McClelland, J. J. & Hanssen, J. L. Laser cooling without repumping: a magneto-optical trap for erbium atoms. Phys. Rev. Lett. 96, 143005 (2006).

    ADS  Google Scholar 

  19. 19.

    Berglund, A. J., Lee, S. A. & McClelland, J. J. Sub-Doppler laser cooling and magnetic trapping of erbium. Phys. Rev. A 76, 053418 (2007).

    ADS  Google Scholar 

  20. 20.

    Frisch, A. et al. Narrow-line magneto-optical trap for erbium. Phys. Rev. A 85, 051401 (2012).

    ADS  Google Scholar 

  21. 21.

    Seon, B. et al. Efficient production of a narrow-line erbium magneto-optical trap with two-stage slowing. Phys. Rev. A 102, 013319 (2020).

    ADS  Google Scholar 

  22. 22.

    Leefer, N. et al. Transverse laser cooling of a thermal atomic beam of dysprosium. Phys. Rev. A 81, 043427 (2010).

    ADS  Google Scholar 

  23. 23.

    Youn, S. H., Lu, M., Ray, U. & Lev, B. L. Dysprosium magneto-optical traps. Phys. Rev. A 82, 043425 (2010).

    ADS  Google Scholar 

  24. 24.

    Lu, M., Youn, S. H. & Lev, B. L. Trapping ultracold dysprosium: a highly magnetic gas for dipolar physics. Phys. Rev. Lett. 104, 063001 (2010).

    ADS  Google Scholar 

  25. 25.

    Lunden, W. et al. Enhancing the capture velocity of a Dy magneto-optical trap with two-stage slowing. Phys. Rev. A 101, 063403 (2020).

    ADS  Google Scholar 

  26. 26.

    Miao, J., Hostetter, J., Stratis, G. & Saffman, M. Magneto-optical trapping of holmium atoms. Phys. Rev. A 89, 041401 (2014).

    ADS  Google Scholar 

  27. 27.

    Sukachev, D. et al. Magneto-optical trap for thulium atoms. Phys. Rev. A 82, 011405 (2010).

    ADS  Google Scholar 

  28. 28.

    Vishnyakova, G. A. et al. Two-stage laser cooling and optical trapping of thulium atoms. Laser Phys. 24, 074018 (2014).

    ADS  Google Scholar 

  29. 29.

    Inoue, R., Miyazawa, Y. & Kozuma, M. Magneto-optical trapping of optically pumped metastable europium. Phys. Rev. A 97, 061607 (2018).

    ADS  Google Scholar 

  30. 30.

    Ilzhöfer, P. et al. Two-species five-beam magneto-optical trap for erbium and dysprosium. Phys. Rev. A 97, 023633 (2018).

    ADS  Google Scholar 

  31. 31.

    Lu, M., Burdick, N. Q., Youn, S. H. & Lev, B. L. Strongly dipolar Bose-Einstein condensate of dysprosium. Phys. Rev. Lett. 107, 190401 (2011).

    ADS  Google Scholar 

  32. 32.

    Aikawa, K. et al. Bose-Einstein condensation of erbium. Phys. Rev. Lett. 108, 210401 (2012).

    ADS  Google Scholar 

  33. 33.

    Lu, M., Burdick, N. Q. & Lev, B. L. Quantum degenerate dipolar Fermi gas. Phys. Rev. Lett. 108, 215301 (2012).

    ADS  Google Scholar 

  34. 34.

    Aikawa, K. et al. Reaching Fermi degeneracy via universal dipolar scattering. Phys. Rev. Lett. 112, 010404 (2014).

    ADS  Google Scholar 

  35. 35.

    Davletov, E. T. et al. Machine learning for achieving Bose-Einstein condensation of thulium atoms. Phys. Rev. A 102, 011302 (2020).

    ADS  Google Scholar 

  36. 36.

    Trautmann, A. et al. Dipolar quantum mixtures of erbium and dysprosium atoms. Phys. Rev. Lett. 121, 213601 (2018).

    ADS  Google Scholar 

  37. 37.

    Ravensbergen, C. et al. Production of a degenerate Fermi-Fermi mixture of dysprosium and potassium atoms. Phys. Rev. A 98, 063624 (2018).

    ADS  Google Scholar 

  38. 38.

    Connolly, C. B., Au, Y. S., Doret, S. C., Ketterle, W. & Doyle, J. M. Large spin relaxation rates in trapped submerged-shell atoms. Phys. Rev. A 81, 010702 (2010).

    ADS  Google Scholar 

  39. 39.

    Berglund, A. J., Hanssen, J. L. & McClelland, J. J. Narrow-line magneto-optical cooling and trapping of strongly magnetic atoms. Phys. Rev. Lett. 100, 113002 (2008).

    ADS  Google Scholar 

  40. 40.

    Lu, M., Youn, S. H. & Lev, B. L. Spectroscopy of a narrow-line laser-cooling transition in atomic dysprosium. Phys. Rev. A 83, 012510 (2011).

    ADS  Google Scholar 

  41. 41.

    Maier, T., Kadau, H., Schmitt, M., Griesmaier, A. & Pfau, T. Narrow-line magneto-optical trap for dysprosium atoms. Opt. Lett. 39, 3138–3141 (2014).

    ADS  Google Scholar 

  42. 42.

    Dreon, D. et al. Optical cooling and trapping of highly magnetic atoms: the benefits of a spontaneous spin polarization. J. Phys. B 50, 065005 (2017).

    ADS  Google Scholar 

  43. 43.

    Phelps, G. A. et al. Sub-second production of a quantum degenerate gas. Preprint at https://arxiv.org/abs/2007.10807 (2020).

  44. 44.

    Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose-Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005).

    ADS  Google Scholar 

  45. 45.

    Lahaye, T. et al. d-wave collapse and explosion of a dipolar Bose-Einstein condensate. Phys. Rev. Lett. 101, 080401 (2008).

    ADS  Google Scholar 

  46. 46.

    Lahaye, T. et al. Strong dipolar effects in a quantum ferrofluid. Nature 448, 672–675 (2007).

    ADS  Google Scholar 

  47. 47.

    Giorgini, S., Pitaevskii, L. P. & Stringari, S. Theory of ultracold atomic Fermi gases. Rev. Mod. Phys. 80, 1215–1274 (2008).

    ADS  Google Scholar 

  48. 48.

    Wolfgang, W. & Zwierlein, M. W. Making, probing and understanding ultracold Fermi gases. La Rivista del Nuovo Cimento 31, 247–422 (2008).

    Google Scholar 

  49. 49.

    Baranov, M. A. Theoretical progress in many-body physics with ultracold dipolar gases. Phys. Rep. 464, 71–111 (2008).

    ADS  Google Scholar 

  50. 50.

    Bohn, J., Cavagnero, M. & Ticknor, C. Quasi-universal dipolar scattering in cold and ultracold gases. New J. Phys. 11, 055039 (2009).

    ADS  Google Scholar 

  51. 51.

    Aikawa, K. et al. Observation of Fermi surface deformation in a dipolar quantum gas. Science 345, 1484–1487 (2014).

    ADS  Google Scholar 

  52. 52.

    Valtolina, G. et al. Dipolar evaporation of reactive molecules to below the Fermi temperature. Nature 588, 239–243 (2020).

    ADS  Google Scholar 

  53. 53.

    Kinoshita, T., Wenger, T. & Weiss, D. S. A quantum Newton’s cradle. Nature 440, 900–903 (2006).

    ADS  Google Scholar 

  54. 54.

    Tang, Y. et al. Thermalization near integrability in a dipolar quantum Newton’s cradle. Phys. Rev. X 8, 021030 (2018).

    Google Scholar 

  55. 55.

    Kao, W., Li, K.-Y., Lin, K.-Y., Gopalakrishnan, S. & Lev, B. L. Topological pumping of a 1D dipolar gas into strongly correlated prethermal states. Science 371, 296–300 (2021).

    ADS  Google Scholar 

  56. 56.

    Baranov, M. A., Dalmonte, M., Pupillo, G. & Zoller, P. Condensed matter theory of dipolar quantum gases. Chem. Rev. 112, 5012–5061 (2012).

    Google Scholar 

  57. 57.

    Dutta, O. et al. Non-standard Hubbard models in optical lattices: a review. Rep. Prog. Phys. 78, 066001 (2015).

    ADS  Google Scholar 

  58. 58.

    Baier, S. et al. Extended Bose-Hubbard models with ultracold magnetic atoms. Science 352, 201–205 (2016).

    ADS  MathSciNet  MATH  Google Scholar 

  59. 59.

    Zhang, R., Cheng, Y., Zhai, H. & Zhang, P. Orbital Feshbach resonance in alkali-earth atoms. Phys. Rev. Lett. 115, 135301 (2015).

    ADS  Google Scholar 

  60. 60.

    Höfer, M. et al. Observation of an orbital interaction-induced Feshbach resonance in 173Yb. Phys. Rev. Lett. 115, 265302 (2015).

    ADS  Google Scholar 

  61. 61.

    Pagano, G. et al. Strongly interacting gas of two-electron fermions at an orbital Feshbach resonance. Phys. Rev. Lett. 115, 265301 (2015).

    ADS  Google Scholar 

  62. 62.

    Petrov, A., Tiesinga, E. & Kotochigova, S. Anisotropy induced Feshbach resonances in a quantum dipolar gas of magnetic atoms. Phys. Rev. Lett. 109, 103002 (2012).

    ADS  Google Scholar 

  63. 63.

    Frisch, A. et al. Quantum chaos in ultracold collisions of gas-phase erbium atoms. Nature 507, 475–479 (2014).

    ADS  Google Scholar 

  64. 64.

    Baumann, K., Burdick, N. Q., Lu, M. & Lev, B. L. Observation of low-field Fano-Feshbach resonances in ultracold gases of dysprosium. Phys. Rev. A 89, 020701 (2014).

    ADS  Google Scholar 

  65. 65.

    Maier, T. et al. Emergence of chaotic scattering in ultracold Er and Dy. Phys. Rev. X 5, 041029 (2015).

    Google Scholar 

  66. 66.

    Khlebnikov, V. A. et al. Random to chaotic statistic transformation in low-field Fano-Feshbach resonances of cold thulium atoms. Phys. Rev. Lett. 123, 213402 (2019).

    ADS  Google Scholar 

  67. 67.

    Durastante, G. et al. Feshbach resonances in an erbium-dysprosium dipolar mixture. Phys. Rev. A 102, 033330 (2020).

    ADS  Google Scholar 

  68. 68.

    Frisch, A. et al. Ultracold dipolar molecules composed of strongly magnetic atoms. Phys. Rev. Lett. 115, 203201 (2015).

    ADS  Google Scholar 

  69. 69.

    Maier, T. et al. Broad universal Feshbach resonances in the chaotic spectrum of dysprosium atoms. Phys. Rev. A 92, 060702 (2015).

    ADS  Google Scholar 

  70. 70.

    Lucioni, E. et al. Dysprosium dipolar Bose-Einstein condensate with broad Feshbach resonances. Phys. Rev. A 97, 060701 (2018).

    ADS  Google Scholar 

  71. 71.

    Baier, S. et al. Realization of a strongly interacting Fermi gas of dipolar atoms. Phys. Rev. Lett. 121, 093602 (2018).

    ADS  Google Scholar 

  72. 72.

    Kotochigova, S. Dispersion interactions and reactive collisions of ultracold polar molecules. New J. Phys. 12, 073041 (2010).

    ADS  Google Scholar 

  73. 73.

    Deutsch, I. H. & Jessen, P. S. Quantum-state control in optical lattices. Phys. Rev. A 57, 1972 (1998).

    ADS  Google Scholar 

  74. 74.

    Dzuba, V. A., Flambaum, V. V. & Lev, B. L. Dynamic polarizabilities and magic wavelengths for dysprosium. Phys. Rev. A 83, 032502 (2011).

    ADS  Google Scholar 

  75. 75.

    Lepers, M., Wyart, J.-F. & Dulieu, O. Anisotropic optical trapping of ultracold erbium atoms. Phys. Rev. A 89, 022505 (2014).

    ADS  Google Scholar 

  76. 76.

    Li, H., Wyart, J. F., Dulieu, O., Nascimbène, S. & Lepers, M. Optical trapping of ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities and van der Waals C6 coefficients. J. Phys. B 50, 014005 (2017).

    ADS  Google Scholar 

  77. 77.

    Li, H., Wyart, J.-F, Dulieu, O. & Lepers, M. Anisotropic optical trapping as a manifestation of the complex electronic structure of ultracold lanthanide atoms: the example of holmium. Phys. Rev. A 95, 062508 (2017).

    ADS  Google Scholar 

  78. 78.

    Golovizin, A. A. et al. Methods for determining the polarisability of the fine structure levels in the ground state of the thulium atom. Quantum Electron. 47, 479 (2017).

    ADS  Google Scholar 

  79. 79.

    Becher, J. H. et al. Anisotropic polarizability of erbium atoms. Phys. Rev. A 97, 012509 (2018).

    ADS  Google Scholar 

  80. 80.

    Kao, W., Tang, Y., Burdick, N. Q. & Lev, B. L. Anisotropic dependence of tune-out wavelength near Dy 741-nm transition. Opt. Express 25, 3411–3419 (2017).

    ADS  Google Scholar 

  81. 81.

    Ravensbergen, C. et al. Accurate determination of the dynamical polarizability of dysprosium. Phys. Rev. Lett. 120, 223001 (2018).

    ADS  Google Scholar 

  82. 82.

    Chalopin, T. et al. Anisotropic light shift and magic polarization of the intercombination line of dysprosium atoms in a far-detuned dipole trap. Phys. Rev. A 98, 040502 (2018).

    ADS  Google Scholar 

  83. 83.

    Kreyer, M. et al. Measurement of the dynamic polarizability of Dy atoms near the 626-nm intercombination line. Preprint at https://arxiv.org/abs/2103.11867 (2021).

  84. 84.

    Tsyganok, V. V., Pershin, D. A., Davletov, E. T., Khlebnikov, V. A. & Akimov, A. V. Scalar, tensor and vector polarizability of Tm atoms in a 532-nm dipole trap. Phys. Rev. A 100, 042502 (2019).

    ADS  Google Scholar 

  85. 85.

    Lepoutre, S. et al. Out-of-equilibrium quantum magnetism and thermalization in a spin-3 many-body dipolar lattice system. Nat. Commun. 10, 1714 (2019).

    ADS  Google Scholar 

  86. 86.

    Patscheider, A. et al. Controlling dipolar exchange interactions in a dense three-dimensional array of large-spin fermions. Phys. Rev. Res. 2, 023050 (2020).

    Google Scholar 

  87. 87.

    Burdick, N. Q., Tang, Y. & Lev, B. L. Long-lived spin-orbit-coupled degenerate dipolar Fermi gas. Phys. Rev. X 6, 031022 (2016).

    Google Scholar 

  88. 88.

    Chalopin, T. et al. Probing chiral edge dynamics and bulk topology of a synthetic Hall system. Nat. Phys. 16, 1017–1021 (2020).

    Google Scholar 

  89. 89.

    Chalopin, T. et al. Quantum-enhanced sensing using non-classical spin states of a highly magnetic atom. Nat. Commun. 9, 4955 (2018).

    ADS  Google Scholar 

  90. 90.

    Satoor, T. et al. Partitioning dysprosium’s electronic spin to reveal entanglement in non-classical states. Preprint at https://arxiv.org/abs2104.14389 (2021).

  91. 91.

    Böttcher, F. et al. New states of matter with fine-tuned interactions: quantum droplets and dipolar supersolids. Rep. Prog. Phys. 84, 012403 (2021).

    ADS  Google Scholar 

  92. 92.

    Santos, L., Shlyapnikov, G. V. & Lewenstein, M. Roton-maxon spectrum and stability of trapped dipolar Bose-Einstein condensates. Phys. Rev. Lett. 90, 250403 (2003).

    ADS  Google Scholar 

  93. 93.

    Wilson, R. M., Ronen, S., Bohn, J. L. & Pu, H. Manifestations of the roton mode in dipolar Bose-Einstein condensates. Phys. Rev. Lett. 100, 245302 (2008).

    ADS  Google Scholar 

  94. 94.

    Bisset, R. N., Baillie, D. & Blakie, P. B. Roton excitations in a trapped dipolar Bose-Einstein condensate. Phys. Rev. A 88, 043606 (2013).

    ADS  Google Scholar 

  95. 95.

    Chomaz, L. et al. Observation of roton mode population in a dipolar quantum gas. Nat. Phys. 14, 442–446 (2018).

    Google Scholar 

  96. 96.

    Petter, D. et al. Probing the roton excitation spectrum of a stable dipolar Bose gas. Phys. Rev. Lett. 122, 183401 (2019).

    ADS  Google Scholar 

  97. 97.

    Schmidt, J.-N. et al. Roton excitations in an oblate dipolar quantum gas. Phys. Rev. Lett. 126, 193002 (2021).

    ADS  Google Scholar 

  98. 98.

    Kadau, H. et al. Observing the Rosensweig instability of a quantum ferrofluid. Nature 530, 194–197 (2016).

    ADS  Google Scholar 

  99. 99.

    Ferrier-Barbut, I., Kadau, H., Schmitt, M., Wenzel, M. & Pfau, T. Observation of quantum droplets in a strongly dipolar Bose gas. Phys. Rev. Lett. 116, 215301 (2016).

    ADS  Google Scholar 

  100. 100.

    Wächtler, F. & Santos, L. Quantum filaments in dipolar Bose-Einstein condensates. Phys. Rev. A 93, 061603 (2016).

    ADS  Google Scholar 

  101. 101.

    Baillie, D., Wilson, R. M., Bisset, R. N. & Blakie, P. B. Self-bound dipolar droplet: a localized matter wave in free space. Phys. Rev. A 94, 021602 (2016).

    ADS  Google Scholar 

  102. 102.

    Wächtler, F. & Santos, L. Ground-state properties and elementary excitations of quantum droplets in dipolar Bose-Einstein condensates. Phys. Rev. A 94, 043618 (2016).

    ADS  Google Scholar 

  103. 103.

    Schmitt, M., Wenzel, M., Böttcher, F., Ferrier-Barbut, I. & Pfau, T. Self-bound droplets of a dilute magnetic quantum liquid. Nature 539, 259–262 (2016).

    ADS  Google Scholar 

  104. 104.

    Chomaz, L. et al. Quantum-fluctuation-driven crossover from a dilute Bose-Einstein condensate to a macrodroplet in a dipolar quantum fluid. Phys. Rev. X 6, 041039 (2016).

    Google Scholar 

  105. 105.

    Baillie, D. & Blakie, P. B. Droplet crystal ground states of a dipolar Bose gas. Phys. Rev. Lett. 121, 195301 (2018).

    ADS  Google Scholar 

  106. 106.

    Böttcher, F. et al. Dilute dipolar quantum droplets beyond the extended Gross-Pitaevskii equation. Phys. Rev. Res. 1, 033088 (2019).

    Google Scholar 

  107. 107.

    Gross, E. P. Unified theory of interacting bosons. Phys. Rev. 106, 161–162 (1957).

    ADS  MATH  Google Scholar 

  108. 108.

    Boninsegni, M. & Prokof’ev, N. V. Colloquium: supersolids: what and where are they? Rev. Mod. Phys. 84, 759–776 (2012).

    ADS  Google Scholar 

  109. 109.

    Böttcher, F. et al. Transient supersolid properties in an array of dipolar quantum droplets. Phys. Rev. X 9, 011051 (2019).

    Google Scholar 

  110. 110.

    Tanzi, L. et al. Observation of a dipolar quantum gas with metastable supersolid properties. Phys. Rev. Lett. 122, 130405 (2019).

    ADS  Google Scholar 

  111. 111.

    Chomaz, L. et al. Long-lived and transient supersolid behaviors in dipolar quantum gases. Phys. Rev. X 9, 021012 (2019).

    Google Scholar 

  112. 112.

    Bohn, J. L., Wilson, R. M. & Ronen, S. How does a dipolar Bose-Einstein condensate collapse? Laser Phys. 19, 547–549 (2009).

    ADS  Google Scholar 

  113. 113.

    Parker, N. G., Ticknor, C., Martin, A. M. & O’Dell, D. H. J. Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate. Phys. Rev. A 79, 013617 (2009).

    ADS  Google Scholar 

  114. 114.

    Wenzel, M., Böttcher, F., Langen, T., Ferrier-Barbut, I. & Pfau, T. Striped states in a many-body system of tilted dipoles. Phys. Rev. A 96, 053630 (2017).

    ADS  Google Scholar 

  115. 115.

    Petrov, D. S. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys. Rev. Lett. 115, 155302 (2015).

    ADS  Google Scholar 

  116. 116.

    Cabrera, C. et al. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science 359, 301–304 (2018).

    ADS  MathSciNet  Google Scholar 

  117. 117.

    Semeghini, G. et al. Self-bound quantum droplets of atomic mixtures in free space. Phys. Rev. Lett. 120, 235301 (2018).

    ADS  Google Scholar 

  118. 118.

    Lee, T. D., Huang, K. & Yang, C. N. Eigenvalues and eigenfunctions of a Bose system of hard spheres and its low-temperature properties. Phys. Rev. 106, 1135–1145 (1957).

    ADS  MathSciNet  MATH  Google Scholar 

  119. 119.

    Lima, A. R. P. & Pelster, A. Quantum fluctuations in dipolar Bose gases. Phys. Rev. A 84, 041604 (2011).

    ADS  Google Scholar 

  120. 120.

    Lu, Z.-K., Li, Y., Petrov, D. S. & Shlyapnikov, G. V. Stable dilute supersolid of two-dimensional dipolar bosons. Phys. Rev. Lett. 115, 075303 (2015).

    ADS  Google Scholar 

  121. 121.

    Roccuzzo, S. M. & Ancilotto, F. Supersolid behavior of a dipolar Bose-Einstein condensate confined in a tube. Phys. Rev. A 99, 041601 (2019).

    ADS  Google Scholar 

  122. 122.

    Andreev, A. F. & Lifshitz, I. M. Quantum theory of defects in crystals. Sov. Phys. JETP 29, 1107 (1969).

    ADS  Google Scholar 

  123. 123.

    Chester, G. V. Speculations on Bose-Einstein condensation and quantum crystals. Phys. Rev. A 2, 256–258 (1970).

    ADS  Google Scholar 

  124. 124.

    Leggett, A. J. Can a solid be ‘superfluid’? Phys. Rev. Lett. 25, 1543–1546 (1970).

    ADS  Google Scholar 

  125. 125.

    Natale, G. et al. Excitation spectrum of a trapped dipolar supersolid and its experimental evidence. Phys. Rev. Lett. 123, 050402 (2019).

    ADS  Google Scholar 

  126. 126.

    Tanzi, L. et al. Supersolid symmetry breaking from compressional oscillations in a dipolar quantum gas. Nature 574, 382–385 (2019).

    ADS  Google Scholar 

  127. 127.

    Hertkorn, J. et al. Fate of the amplitude mode in a trapped dipolar supersolid. Phys. Rev. Lett. 123, 193002 (2019).

    ADS  Google Scholar 

  128. 128.

    Guo, M. et al. The low-energy Goldstone mode in a trapped dipolar supersolid. Nature 574, 386–389 (2019).

    ADS  Google Scholar 

  129. 129.

    Tanzi, L. et al. Evidence of superfluidity in a dipolar supersolid from nonclassical rotational inertia. Science 371, 1162–1165 (2021).

    ADS  MathSciNet  Google Scholar 

  130. 130.

    Sohmen, M. et al. Birth, life, and death of a dipolar supersolid. Phys. Rev. Lett. 126, 233401 (2021).

    ADS  Google Scholar 

  131. 131.

    Ilzhöfer, P. et al. Phase coherence in out-of-equilibrium supersolid states of ultracold dipolar atoms. Nat. Phys. 17, 356–361 (2021).

    Google Scholar 

  132. 132.

    Zhang, Y.-C., Pohl, T. & Maucher, F. Phases of supersolids in confined dipolar Bose-Einstein condensates. Preprint at https://arxiv.org/abs/2103.12688 (2021).

  133. 133.

    Hertkorn, J. et al. Supersolidity in two-dimensional trapped dipolar droplet arrays. Preprint at https://arxiv.org/abs/2103.09752 (2021).

  134. 134.

    Norcia, M. A. et al. Two-dimensional supersolidity in a dipolar quantum gas. Nature 596, 357–361 (2021).

    ADS  Google Scholar 

  135. 135.

    Roccuzzo, S. M., Gallemí, A., Recati, A. & Stringari, S. Rotating a supersolid dipolar gas. Phys. Rev. Lett. 124, 045702 (2020).

    ADS  Google Scholar 

  136. 136.

    Ancilotto, F., Barranco, M., Pi, M. & Reatto, L. Vortex properties in the extended supersolid phase of dipolar Bose-Einstein condensates. Phys. Rev. A 103, 033314 (2021).

    ADS  Google Scholar 

  137. 137.

    Gallemí, A., Roccuzzo, S. M., Stringari, S. & Recati, A. Quantized vortices in dipolar supersolid Bose-Einstein-condensed gases. Phys. Rev. A 102, 023322 (2020).

    ADS  Google Scholar 

  138. 138.

    Hertkorn, J. et al. Pattern formation in quantum ferrofluids: from supersolids to superglasses. Preprint at https://arxiv.org/abs/2103.13930 (2021).

  139. 139.

    Bland, T. et al. Two-dimensional supersolidity in a circular trap. Preprint at https://arxiv.org/abs/2107.06680 (2021).

  140. 140.

    Trautmann, A. et al. Spectroscopy of Rydberg states in erbium using electromagnetically induced transparency. Preprint at https://arxiv.org/abs/2105.00738 (2021).

  141. 141.

    Mukherjee, R., Millen, J., Nath, R., Jones, M. & Pohl, T. Many-body physics with alkaline-earth Rydberg lattices. J. Phys. B 44, 184010 (2011).

    ADS  Google Scholar 

  142. 142.

    Wilson, J. et al. Trapped arrays of alkaline earth Rydberg atoms in optical tweezers. Preprint at https://arxiv.org/abs/1912.08754 (2019).

  143. 143.

    Smith, J. C., Baillie, D. & Blakie, P. B. Quantum droplet states of a binary magnetic gas. Phys. Rev. Lett. 126, 025302 (2021).

    ADS  Google Scholar 

  144. 144.

    Bisset, R. N., Peña Ardila, L. A. & Santos, L. Quantum droplets of dipolar mixtures. Phys. Rev. Lett. 126, 025301 (2021).

    ADS  Google Scholar 

  145. 145.

    Ilzhöfer, P. Creation of Dipolar Quantum Mixtures of Erbium and Dysprosium. PhD thesis, Univ. Innsbruck (2020).

  146. 146.

    Li, M., Tiesinga, E. & Kotochigova, S. Orbital quantum magnetism in spin dynamics of strongly interacting magnetic lanthanide atoms. Phys. Rev. A 97, 053627 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

F.F. is financially supported through an ERC consolidator grant (RARE, no. 681432), an NFRI grant (MIRARE, no. ÖAW0600) of the Austrian Academy of Science and a QuantERA grant MAQS from the Austrian Science Fund (FWF no. I4391-N). F.F. acknowledges support from the DFG/FWF via grant no. FOR 2247/PI2790. M.A.N. has received funding as an ESQ Postdoctoral Fellow from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 801110 and the Austrian Federal Ministry of Education, Science and Research (BMBWF).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesca Ferlaino.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Physics thanks the anonymous reviewers for their contribution to the peer review of this work

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Norcia, M.A., Ferlaino, F. Developments in atomic control using ultracold magnetic lanthanides. Nat. Phys. 17, 1349–1357 (2021). https://doi.org/10.1038/s41567-021-01398-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41567-021-01398-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing