Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast dynamics of correlation bands following XUV molecular photoionization


Modern ultrashort X-ray/XUV (extreme ultraviolet) sources provide unique opportunities to investigate the primary reactions of matter upon energetic excitation. Understanding these processes in molecules on ultrafast timescales is required to improve bespoke high-energy radiation detectors, nanomedicine schemes or to study the molecular composition of interstellar media. However, current experiments struggle to provide a general framework because of the uniqueness and complexity of each system. Here we show the universal role of correlation bands—features created by electron correlation. This is done by studying ultrafast energy relaxation of size-scalable two-dimensional molecules following ionization by an ultrashort XUV pulse. We observed long lifetimes that nonlinearly increase with the number of valence electrons. A general law based on solid-like electron–phonon scattering is proposed, which explains both our results and previously reported measurements. This offers new opportunities in attosecond science and high-energy photophysics.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Dynamics in correlation bands.
Fig. 2: Scaling law in the relaxation of CBs for 2D and 3D structures.
Fig. 3: Analogy between CBs and solid-like band structures.

Data availability

Data that support the plots within this paper and other findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Code availability

The codes that support the findings of this study are available from the corresponding authors upon reasonable request.


  1. Maddalena, F. et al. Inorganic, organic and perovskite halides with nanotechnology for high-light yield X- and γ-ray scintillators. Crystals 9, 88 (2019).

    Article  Google Scholar 

  2. Chatterjee, D. K., Fong, L. S. & Zhang, Y. Nanoparticles in photodynamic therapy: an emerging paradigm. Adv. Drug Deliv. Rev. 60, 1627–1637 (2008).

    Article  Google Scholar 

  3. Tielens, A. G. G. M. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46, 289–337 (2008).

    ADS  Article  Google Scholar 

  4. Attar, A. R. et al. Femtosecond X-ray spectroscopy of an electrocyclic ring-opening reaction. Science 356, 54–59 (2017).

    ADS  Article  Google Scholar 

  5. Berrah, N. et al. Femtosecond-resolved observation of the fragmentation of buckminsterfullerene following X-ray multiphoton ionization. Nat. Phys. 15, 1279–1283 (2019).

    Article  Google Scholar 

  6. Pertot, Y. et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source. Science 355, 264–267 (2017).

    ADS  Article  Google Scholar 

  7. Nisoli, M., Decleva, P., Calegari, F., Palacios, A. & Martín, F. Attosecond electron dynamics in molecules. Chem. Rev. 117, 10760–10825 (2017).

    Article  Google Scholar 

  8. Kobayashi, Y., Chang, K. F., Zeng, T., Neumark, D. M. & Leone, S. R. Direct mapping of curve-crossing dynamics in IBr by attosecond transient absorption spectroscopy. Science 365, 79–83 (2019).

    ADS  Article  Google Scholar 

  9. Sansone, G. et al. Electron localization following attosecond molecular photoionization. Nature 465, 763–766 (2010).

    ADS  Article  Google Scholar 

  10. Neidel, C. H. et al. Probing time-dependent molecular dipoles on the attosecond time scale. Phys. Rev. Lett. 111, 033001 (2013).

    ADS  Article  Google Scholar 

  11. Drescher, L. et al. State-resolved probing of attosecond timescale molecular dipoles. J. Phys. Chem. Lett. 10, 265–269 (2019).

    Article  Google Scholar 

  12. Calegari, F. et al. Ultrafast electron dynamics in phenylalanine initiated by attosecond pulses. Science 346, 336–339 (2014).

    ADS  Article  Google Scholar 

  13. Cederbaum, L. S. & Zobeley, J. Ultrafast charge migration by electron correlation. Chem. Phys. Lett. 307, 205–210 (1999).

    ADS  Article  Google Scholar 

  14. Kuleff, A. I. & Cederbaum, L. S. Ultrafast correlation-driven electron dynamics. J. Phys. B 47, 124002 (2014).

    ADS  Article  Google Scholar 

  15. Lara-Astiaso, M. et al. Attosecond pump–probe spectroscopy of charge dynamics in tryptophan. J. Phys. Chem. Lett. 9, 4570–4577 (2018).

    Article  Google Scholar 

  16. Lépine, F., Ivanov, M. Y. & Vrakking, M. J. J. Attosecond molecular dynamics: fact or fiction? Nat. Photon. 8, 195–204 (2014).

    ADS  Article  Google Scholar 

  17. Vacher, M., Bearpark, M. J., Robb, M. A. & Malhado, J. P. Electron dynamics upon ionization of polyatomic molecules: coupling to quantum nuclear motion and decoherence. Phys. Rev. Lett. 118, 083001 (2017).

    ADS  Article  Google Scholar 

  18. Despré, V., Golubev, N. V. & Kuleff, A. I. Charge migration in propiolic acid: a full quantum dynamical study. Phys. Rev. Lett. 121, 203002 (2018).

    ADS  Article  Google Scholar 

  19. Belshaw, L. et al. Observation of ultrafast charge migration in an amino acid. J. Phys. Chem. Lett. 3, 3751–3754 (2012).

    Article  Google Scholar 

  20. Månsson, E. P. et al. Ultrafast dynamics in the DNA building blocks thymidine and thymine initiated by ionizing radiation. Phys. Chem. Chem. Phys. 19, 19815–19821 (2017).

    Article  Google Scholar 

  21. Galbraith, M. C. E. et al. XUV-induced reactions in benzene on sub-10-fs timescale: nonadiabatic relaxation and proton migration. Phys. Chem. Chem. Phys. 19, 19822–19828 (2017).

    Article  Google Scholar 

  22. Curchod, B. F. E. & Martínez, T. J. Ab initio nonadiabatic quantum molecular dynamics. Chem. Rev. 118, 3305–3336 (2018).

    Article  Google Scholar 

  23. Arnold, C., Vendrell, O., Welsch, R. & Santra, R. Control of nuclear dynamics through conical intersections and electronic coherences. Phys. Rev. Lett. 120, 123001 (2018).

    ADS  Article  Google Scholar 

  24. Deleuze, M. S. & Cederbaum, L. S. Formation of satellite bands in the ionization spectra of extended systems. Phys. Rev. B 53, 13326 (1996).

    ADS  Article  Google Scholar 

  25. Cederbaum, L. S., Domcke, W., Schirmer, J. & von Niessen, W. Correlation effects in the ionization of molecules: breakdown of the molecular orbital picture. Adv. Chem. Phys. 65, 115–159 (1986).

    Google Scholar 

  26. Tielrooij, K. J. et al. Photoexcitation cascade and multiple hot-carrier generation in graphene. Nat. Phys. 9, 248–252 (2013).

    Article  Google Scholar 

  27. Song, J. C. W., Tielrooij, K. J., Koopens, F. H. L. & Levitov, L. S. Photoexcited carrier dynamics and impact-excitation cascade in graphene. Phys. Rev. B 87, 155429 (2013).

    ADS  Article  Google Scholar 

  28. Marciniak, A. et al. Electron correlation driven non-adiabatic relaxation in molecules excited by an ultrashort extreme ultraviolet pulse. Nat. Commun. 10, 337 (2019).

    ADS  Article  Google Scholar 

  29. Marciniak, A. et al. XUV excitation followed by ultrafast non-adiabatic relaxation in PAH molecules as a femto-astrochemistry experiment. Nat. Commun. 6, 7909 (2015).

    ADS  Article  Google Scholar 

  30. Marciniak, A. et al. Ultrafast nonadiabatic cascade and subsequent photofragmentation of extreme ultraviolet excited caffeine molecule. J. Phys. Chem. Lett. 9, 6927–6933 (2018).

    Article  Google Scholar 

  31. Tielens, A. G. G. M. The molecular universe. Rev. Mod. Phys. 85, 1021–1081 (2013).

    ADS  Article  Google Scholar 

Download references


We thank C. Dujardin and L.S. Cederbaum for fruitful discussions. We acknowledge financial support from CNRS, ANR Circé (ANR-16-CE30-0012). V.D. acknowledges financial support from the DFG through the QUTIF priority programme. A.I.K. thanks US ARO for financial support under grant no. W911NF-14-1-0383. Studies of interstellar PAHs at Leiden Observatory are supported through a grant by the Netherlands Organisation for Scientific Research (NWO) as part of the Dutch Astrochemistry Network and through the Spinozapremie.

Author information

Authors and Affiliations



M.H., A.G.G.M.T. and F.L. conceived the project. M.H., P.C.N., V.L., A.B., A.S., G.K., R.B., E.C. and F.L. conducted the experiments. M.H., V.L. and A.B. performed the data analysis. M.H., V.D., A.I.K. and F.L. conceived the theoretical model. V.D. and A.I.K. performed the calculations. M.H. and F.L. wrote the manuscript, with inputs from all the authors. F.L. led the project.

Corresponding author

Correspondence to F. Lépine.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Physics thanks Laura Cattaneo, Mette Gaarde and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Table 1.

Source data

Source Data Fig. 1

Source data of Fig. 1b (raw data, fit, cross-correlation) and of Fig. 1c.

Source Data Fig. 2

Source data of Fig. 2a–j, including fits in Fig. 2j.

Source Data Fig. 3

Source data of Fig. 3a–c (raw ADC data and extracted DOS).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hervé, M., Despré, V., Castellanos Nash, P. et al. Ultrafast dynamics of correlation bands following XUV molecular photoionization. Nat. Phys. 17, 327–331 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing