Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coherent control of ultrafast extreme ultraviolet transient absorption

Abstract

Ultrafast extreme ultraviolet (XUV) transient absorption is the process by which atoms and molecules absorb light on a timescale faster than the lifetime of the states involved. Coherent control uses quantum coherences to manipulate quantum pathways in light–matter interactions. Here we combine the two. We show that we can control the absorption spectral lineshape, changing it from Lorentzian to Fano to inverted Lorentzian and back again. The control is achieved by creating quantum coherence in the ground electronic state of hydrogen molecules, long before the arrival of the ultrafast XUV pulse. We show that the absorption can become negative at 12 eV, which is the optical gain. These observations provide new insights into the control of spectral lineshapes and open the way for achieving lasing without inversion in the XUV spectral range.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Absorption lineshape change induced by rotational coherence.
Fig. 2: XUV transient absorption in aligned H2.
Fig. 3: Absorption lineshape of an individual rotational transition in aligned H2.
Fig. 4: XUV transient absorption in aligned D2.
Fig. 5: Optical gain in aligned D2.
Fig. 6: Calculated FID of a three-level system based on H2.

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request.

Code availability

The code used in this study is available from the corresponding authors upon reasonable request.

References

  1. Safavi-Naeini, A. H. et al. Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69–73 (2011).

    ADS  Google Scholar 

  2. Fleischhauer, M., Imamoglu, A. & Marangos, J. P. Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005).

    ADS  Google Scholar 

  3. Wang, C. Q. et al. Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16, 334–340 (2020).

    ADS  Google Scholar 

  4. Arimondo, E. Coherent population trapping in laser spectroscopy. Prog. Opt. 35, 257–354 (1996).

    ADS  Google Scholar 

  5. Donarini, A. et al. Coherent population trapping by dark state formation in a carbon nanotube quantum dot. Nat. Commun. 10, 381 (2019).

    ADS  Google Scholar 

  6. Scully, M. O. & Fleischhauer, M. Lasers without inversion. Science 263, 337–338 (1994).

    ADS  Google Scholar 

  7. Mompart, J. & Corbalán, R. Lasing without inversion. J. Opt. B: Quantum Semiclass. Opt. 2, R7–R24 (2000).

    ADS  Google Scholar 

  8. Richter, M. et al. Rotational quantum beat lasing without inversion. Optica 7, 586–592 (2020).

    ADS  Google Scholar 

  9. Langin, T. K., Gorman, G. M. & Killian, T. C. Laser cooling of ions in a neutral plasma. Science 363, 61–64 (2019).

    ADS  Google Scholar 

  10. Ludlow, A. D., Boyd, M. M., Ye, J., Peik, E. & Schmidt, P. O. Optical atomic clocks. Rev. Mod. Phys. 87, 637–701 (2015).

    ADS  Google Scholar 

  11. Villeneuve, D. M., Hockett, P., Vrakking, M. J. J. & Niikura, H. Coherent imaging of an attosecond electron wave packet. Science 356, 1150–1153 (2017).

    Google Scholar 

  12. Goulielmakis, E. et al. Real-time observation of valence electron motion. Nature 466, 739–743 (2010).

    ADS  Google Scholar 

  13. Hosler, E. R. & Leone, S. R. Characterization of vibrational wave packets by core-level high-harmonic transient absorption spectroscopy. Phys. Rev. A 88, 023420 (2013).

    ADS  Google Scholar 

  14. Wei, Z. R. et al. Elucidating the origins of multimode vibrational coherences of polyatomic molecules induced by intense laser fields. Nat. Commun. 8, 735 (2017).

    ADS  Google Scholar 

  15. Wu, M., Chen, S., Camp, S., Schafer, K. J. & Gaarde, M. B. Theory of strong-field attosecond transient absorption. J. Phys. B: At. Mol. Opt. Phys. 49, 062003 (2016).

    ADS  Google Scholar 

  16. Santra, R., Yakovlev, V. S., Pfeifer, T. & Loh, Z.-H. Theory of attosecond transient absorption spectroscopy of strong-field-generated ions. Phys. Rev. A 83, 033405 (2011).

    ADS  Google Scholar 

  17. Ott, C. et al. Lorentz meets Fano in spectral line shapes: a universal phase and its laser control. Science 340, 716–720 (2013).

    ADS  Google Scholar 

  18. Kaldun, A. et al. Observing the ultrafast buildup of a Fano resonance in the time domain. Science 354, 738–741 (2016).

    ADS  Google Scholar 

  19. Bengtsson, S. et al. Space-time control of free induction decay in the extreme ultraviolet. Nat. Photon. 11, 252–258 (2017).

    ADS  Google Scholar 

  20. Chini, M. et al. Subcycle a.c. Stark shift of helium excited states probed with isolated attosecond pulses. Phys. Rev. Lett. 109, 073601 (2012).

    ADS  Google Scholar 

  21. Chini, M. et al. Sub-cycle oscillations in virtual states brought to light. Sci. Rep. 3, 1105 (2013).

    Google Scholar 

  22. Liao, C.-T., Sandhu, A., Camp, S., Schafer, K. J. & Gaarde, M. B. Beyond the single-atom response in absorption line shapes: probing a dense, laser-dressed helium gas with attosecond pulse trains. Phys. Rev. Lett. 114, 143002 (2015).

    ADS  Google Scholar 

  23. Drescher, L. et al. Extreme-ultraviolet spectral compression by four-wave mixing. Nat. Photon. 15, 263–266 (2021).

    ADS  Google Scholar 

  24. Pertot, Y. et al. Time-resolved X-ray absorption spectroscopy with a water window high-harmonic source. Science 355, 266–267 (2017).

    ADS  Google Scholar 

  25. Kobayashi, Y., Chang, K. F., Zeng, T., Neumark, D. M. & Leone, S. R. Direct mapping of curve-crossing dynamics in IBr by attosecond transient absorption spectroscopy. Science 365, 79–83 (2019).

    ADS  Google Scholar 

  26. Loh, Z.-H. et al. Observation of the fastest chemical processes in the radiolysis of water. Science 367, 179–182 (2020).

    ADS  Google Scholar 

  27. Reduzzi, M. et al. Observation of autoionization dynamics and sub-cycle quantum beating in electronic molecular wave packets. J. Phys. B: At. Mol. Opt. Phys. 49, 065102 (2016).

    ADS  Google Scholar 

  28. Cheng, Y. et al. Reconstruction of an excited-state molecular wave packet with attosecond transient absorption spectroscopy. Phys. Rev. A 94, 023403 (2016).

    ADS  Google Scholar 

  29. Peng, P. et al. Symmetry of molecular Rydberg states revealed by XUV transient absorption spectroscopy. Nat. Commun. 10, 5269 (2019).

    ADS  Google Scholar 

  30. Schultze, M. et al. Attosecond band-gap dynamics in silicon. Science 346, 1348–1352 (2014).

    ADS  Google Scholar 

  31. Lucchini, M. et al. Attosecond dynamical Franz-Keldysh effect in polycrystalline diamond. Science 353, 916–919 (2016).

    ADS  Google Scholar 

  32. Moulet, A. et al. Soft X-ray excitonics. Science 357, 1134–1138 (2017).

    ADS  Google Scholar 

  33. Schlaepfer, F. et al. Attosecond optical-field-enhanced carrier injection into the GaAs conduction band. Nat. Phys. 14, 560–564 (2018).

    Google Scholar 

  34. Warrick, E. R. et al. Attosecond transient absorption spectroscopy of molecular nitrogen: vibrational coherences in the \(\mathrm{b}^{\prime 1}{{\Sigma }}_\mathrm{u}^ +\) state. Chem. Phys. Lett. 683, 408–415 (2017).

    ADS  Google Scholar 

  35. Drescher, L. et al. State-resolved probing of attosecond timescale molecular dipoles. J. Phys. Chem. Lett. 10, 265–269 (2019).

    Google Scholar 

  36. Kraus, P. M. et al. Measurement and laser control of attosecond charge migration in ionized iodoacetylene. Science 350, 790–795 (2015).

    ADS  Google Scholar 

  37. Lee, K. F., Villeneuve, D. M., Corkum, P. B., Stolow, A. & Underwood, J. G. Field-free three-dimensional alignment of polyatomic molecules. Phys. Rev. Lett. 97, 173001 (2006).

    ADS  Google Scholar 

  38. Stapelfeldt, H. & Seideman, T. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75, 543–557 (2003).

    ADS  Google Scholar 

  39. Hammond, T. J. et al. Integrating solids and gases for attosecond pulse generation. Nat. Photon. 11, 594–599 (2017).

    Google Scholar 

  40. Mi, Y. H. et al. Clocking enhanced ionization of hydrogen molecules with rotational wave packets. Phys. Rev. Lett. 125, 173201 (2020).

    ADS  Google Scholar 

  41. Scully, M. O., Zhu, S.-Y. & Gavrielides, A. Degenerate quantum-beat laser: lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813–2816 (1989).

    ADS  Google Scholar 

  42. Harris, S. E. Lasers without inversion: interference of lifetime-broadened resonances. Phys. Rev. Lett. 62, 1033–1036 (1989).

    ADS  Google Scholar 

  43. Fry, E. S. et al. Atomic coherence effects within the sodium D1 line: lasing without inversion via population trapping. Phys. Rev. Lett. 70, 3235–3238 (1993).

    ADS  Google Scholar 

  44. van der Veer, W. E., van Diest, R. J. J., Dönszelmann, A. & van Linden van den Heuvell, H. B. Experimental demonstration of light amplification without population inversion. Phys. Rev. Lett. 70, 3243–3246 (1993).

    ADS  Google Scholar 

  45. Nottelmann, A., Peters, C. & Lange, W. Inversionless amplification of picosecond pulses due to Zeeman coherence. Phys. Rev. Lett. 70, 1783–1786 (1993).

    ADS  Google Scholar 

  46. Ramakrishna, S. & Seideman, T. Dissipative dynamics of laser induced nonadiabatic molecular alignment. J. Chem. Phys. 124, 034101 (2006).

    ADS  Google Scholar 

  47. Yao, J. P. et al. High-brightness switchable multiwavelength remote laser in air. Phys. Rev. A 84, 051802 (2011).

    ADS  Google Scholar 

  48. Xu, H. L., Lӧtstedt, E., Iwasaki, A. & Yamanouchi, K. Sub-10-fs population inversion in N2+ in air lasing through multiple state coupling. Nat. Commun. 6, 8347 (2015).

    ADS  Google Scholar 

  49. Britton, M. et al. Testing the role of recollision in N2+ air lasing. Phys. Rev. Lett. 120, 133208 (2018).

    ADS  Google Scholar 

Download references

Acknowledgements

We thank D. Crane and R. Kroeker for technical support. We acknowledge fruitful discussions with A. Korobenko, G. Xin, A. Stolow, M. Spanner, B. Bernhardt and V. Schuster. This research is supported by the NSERC Discovery Grant program (RGPIN-327147-2012; D.M.V.), and by the US Army Research Office through award W911NF-14-1-0383 (D.M.V.). We acknowledge support of the Joint Centre for Extreme Photonics (P.B.C. and D.M.V.), the DFG (grant no. MI 2434/1-1; Y.M.), and the start-up grant of ShanghaiTech University (P.P.).

Author information

Affiliations

Authors

Contributions

P.P. and D.M.V. conceived and planned the experiment. P.P., Y.M. and X.D. conducted the measurements. P.P. and D.M.V. analysed and interpreted the data. M.L. and M.B. provided the theoretical supporting calculations. A.Y.N., P.B.C. and D.M.V. supervised the project. P.P. wrote the manuscript, with inputs from all the authors.

Corresponding authors

Correspondence to Peng Peng or D. M. Villeneuve.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Photonics thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10 and Sections 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peng, P., Mi, Y., Lytova, M. et al. Coherent control of ultrafast extreme ultraviolet transient absorption. Nat. Photon. 16, 45–51 (2022). https://doi.org/10.1038/s41566-021-00907-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41566-021-00907-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing