Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys


Ferrimagnetic alloys are model systems for understanding the ultrafast magnetization switching in materials with antiferromagnetically coupled sublattices. Here we investigate the dynamics of the rare-earth and transition-metal sublattices in ferrimagnetic GdFeCo and TbCo dots excited by spin–orbit torques with combined temporal, spatial and elemental resolution. We observe distinct switching regimes in which the magnetizations of the two sublattices either remain synchronized throughout the reversal process or switch following different trajectories in time and space. In the latter case, we observe a transient ferromagnetic state that lasts up to 2 ns. The asynchronous switching of the two magnetizations is ascribed to the master–agent dynamics induced by the spin–orbit torques on the transition-metal and rare-earth sublattices and their weak antiferromagnetic coupling, which depends sensitively on the alloy microstructure. Larger antiferromagnetic exchange leads to faster switching and shorter recovery of the magnetization after a current pulse. Our findings provide insight into the dynamics of ferrimagnets and the design of spintronic devices with fast and uniform switching.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Time-, space- and element-resolved current-induced switching of GdFeCo.
Fig. 2: Switching dynamics of GdFeCo.
Fig. 3: Switching dynamics of TbCo.
Fig. 4: Micromagnetic simulations of the asynchronous dynamics.
Fig. 5: Microstructure of fresh and aged GdFeCo films.

Data availability

The datasets presented in this study are available from the corresponding authors upon reasonable request and in the ETH Research Collection at


  1. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    CAS  Article  Google Scholar 

  2. Vahaplar, K. et al. Ultrafast path for optical magnetization reversal via a strongly nonequilibrium state. Phys. Rev. Lett. 103, 66–69 (2009).

    Article  CAS  Google Scholar 

  3. Kirilyuk, A., Kimel, A. V. & Rasing, T. Laser-induced magnetization dynamics and reversal in ferrimagnetic alloys. Rep. Prog. Phys. 76, 026501 (2013).

  4. Kimel, A. V. & Li, M. Writing magnetic memory with ultrashort light pulses. Nat. Rev. Mater. 4, 189–200 (2019).

    Article  Google Scholar 

  5. Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121, 057701 (2018).

    CAS  Article  Google Scholar 

  6. Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    CAS  Article  Google Scholar 

  7. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    CAS  Article  Google Scholar 

  8. Yang, S. H., Ryu, K. S. & Parkin, S. Domain-wall velocities of up to 750 m s–1 driven by exchange-coupling torque in synthetic antiferromagnets. Nat. Nanotechnol. 10, 221–226 (2015).

    CAS  Article  Google Scholar 

  9. Lalieu, M. L., Lavrijsen, R. & Koopmans, B. Integrating all-optical switching with spintronics. Nat. Commun. 10, 1–6 (2019).

    CAS  Article  Google Scholar 

  10. Ostler, T. A. et al. Crystallographically amorphous ferrimagnetic alloys: Comparing a localized atomistic spin model with experiments. Physical Review B 84, 110 (2011).

    Article  CAS  Google Scholar 

  11. Schellekens, A. J. & Koopmans, B. Microscopic model for ultrafast magnetization dynamics of multisublattice magnets. Phys. Rev. B 87, 020407 (2013).

    Article  CAS  Google Scholar 

  12. Atxitia, U., Barker, J., Chantrell, R. W. & Chubykalo-Fesenko, O. Controlling the polarity of the transient ferromagneticlike state in ferrimagnets. Phys. Rev. B 89, 224421 (2014).

    Article  CAS  Google Scholar 

  13. Davies, C. et al. Pathways for single-shot all-optical switching of magnetization in ferrimagnets. Phys. Rev. Appl. 13, 024064 (2020).

    CAS  Article  Google Scholar 

  14. Jakobs, F. et al. Unifying femtosecond and picosecond single-pulse magnetic switching in Gd-Fe-Co. Phys. Rev. B 103, 104422 (2021).

    CAS  Article  Google Scholar 

  15. Haltz, E., Krishnia, S., Berges, L., Mougin, A. & Sampaio, J. Domain wall dynamics in antiferromagnetically coupled double-lattice systems. Phys. Rev. B 103, 014444 (2021).

    CAS  Article  Google Scholar 

  16. Buschow, K. H. J. Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40, 1179–1256 (1977).

    CAS  Article  Google Scholar 

  17. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    CAS  Article  Google Scholar 

  18. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    CAS  Article  Google Scholar 

  19. Mentink, J. H. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).

    CAS  Article  Google Scholar 

  20. Graves, C. E. et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferrimagnetic GdFeCo. Nat. Mater. 12, 293–298 (2013).

    CAS  Article  Google Scholar 

  21. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. (2017).

  22. Wilson, R. B. et al. Ultrafast magnetic switching of GdFeCo with electronic heat currents. Phys. Rev. B 95, 180409(R) (2017).

  23. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    CAS  Article  Google Scholar 

  24. Mishra, R. et al. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys. Rev. Lett. 118, 167201 (2017).

    Article  Google Scholar 

  25. Roschewsky, N., Lambert, C.-H. & Salahuddin, S. Spin-orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Phys. Rev. B 96, 064406 (2017).

    Article  Google Scholar 

  26. Je, S.-G. et al. Spin-orbit torque-induced switching in ferrimagnetic alloys: experiments and modeling. Appl. Phys. Lett. 112, 062401 (2018).

    Article  CAS  Google Scholar 

  27. Sala, G. et al. Real-time Hall-effect detection of current-induced magnetization dynamics in ferrimagnets. Nat. Commun. 12, 656 (2021).

    CAS  Article  Google Scholar 

  28. Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin-orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

    CAS  Article  Google Scholar 

  29. Shiino, T. et al. Antiferromagnetic domain wall motion driven by spin-orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    Article  CAS  Google Scholar 

  30. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    CAS  Article  Google Scholar 

  31. Baumgartner, M. et al. Spatially and time-resolved magnetization dynamics driven by spin–orbit torques. Nat. Nanotechnol. 12, 980–986 (2017).

    CAS  Article  Google Scholar 

  32. Martinez, E. et al. Universal chiral-triggered magnetization switching in confined nanodots. Sci. Rep. 5, 10156 (2015).

    Article  Google Scholar 

  33. Martínez, E., Raposo, V. & Alejos, Ó. Current-driven domain wall dynamics in ferrimagnets: micromagnetic approach and collective coordinates model. J. Magn. Magn. Mater. 491, 165545 (2019).

    Article  CAS  Google Scholar 

  34. Bellouard, C. et al. Negative spin-valve effect in Co65Fe35/Ag/(Co65Fe35)50Gd50 trilayers. Phys. Rev. B 53, 5082–5085 (1996).

    CAS  Article  Google Scholar 

  35. Tanaka, H., Takayama, S. & Fujiwara, T. Electronic-structure calculations for amorphous and crystalline Gd33Fe67 alloys. Phys. Rev. B 46, 7390–7394 (1992).

    CAS  Article  Google Scholar 

  36. Zhou, W., Seki, T., Kubota, T., Bauer, G. E. & Takanashi, K. Spin-Hall and anisotropic magnetoresistance in ferrimagnetic Co-Gd/Pt layers. Phys. Rev. Mater. 2, 094404 (2018).

  37. Lim, Y. et al. Dephasing of transverse spin current in ferrimagnetic alloys. Phys. Rev. B 103, 24443 (2021).

    CAS  Article  Google Scholar 

  38. Bläsing, R. et al. Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nat. Commun. 9, 4984 (2018).

    Article  CAS  Google Scholar 

  39. Chubykalo-Fesenko, O., Nowak, U., Chantrell, R. W. & Garanin, D. Dynamic approach for micromagnetics close to the Curie temperature. Phys. Rev. B 74, 094436 (2006).

    Article  CAS  Google Scholar 

  40. Liu, T.-M. et al. Nanoscale confinement of all-optical magnetic switching in TbFeCo - competition with nanoscale heterogeneity. Nano Lett. 15, 6862–6868 (2015).

    Article  CAS  Google Scholar 

  41. Kirk, E. et al. Anisotropy-induced spin reorientation in chemically modulated amorphous ferrimagnetic films. Phys. Rev. Mater. 4, 074403 (2020).

    CAS  Article  Google Scholar 

  42. Li, Z. G., Smith, D. J. & Marinero, E. E. Investigations of microstructure of thin TbFeCo films by high-resolution electron microscopy. J. Appl. Phys. 69, 6590 (1991).

    CAS  Article  Google Scholar 

  43. Krishnia, S. et al. Spin-orbit coupling in single-layer ferrimagnets: direct observation of spin-orbit torques and chiral spin textures. Phys. Rev. Appl.16, 024040 (2021).

  44. Mimura, Y., Imamura, N., Kobayashi, T., Okada, A. & Kushiro, Y. Magnetic properties of amorphous alloy films of Fe with Gd, Tb, Dy, Ho, or Er. J. Appl. Phys. 49, 1208–1215 (1978).

    CAS  Article  Google Scholar 

  45. Beens, M., Lalieu, M. L., Duine, R. A. & Koopmans, B. The role of intermixing in all-optical switching of synthetic-ferrimagnetic multilayers, AIP Adv. 9, 125133 (2019).

  46. Taylor, R. C. & Gangulee, A. Magnetic properties of 3d transition meltals in the amorphous ternary alloys: Gd0.2(FexCo1−x)0.8, Gd0.2(CoxNi1−x)0.8, and Gd0.2(FexNi1−x)0.8. Phys. Rev. B 22, 1320–1326 (1980).

    CAS  Article  Google Scholar 

  47. Park, J. et al. Unconventional magnetoresistance induced by sperimagnetism in GdFeCo. Phys. Rev. B 103, 014421 (2021).

    CAS  Article  Google Scholar 

  48. Konar, B., Kim, J. & Jung, I.-H. Critical systematic evaluation and thermodynamic optimization of the Fe-RE system: RE = Gd, Tb, Dy, Ho, Er, Tm, Lu, and Y. J. Phase Equilibria Diffus. 38, 509–542 (2017).

    CAS  Article  Google Scholar 

  49. Bernstein & Gueugnon, C. Aging phenomena in TbFe thin films. J. Appl. Phys. 55, 1760–1762 (1984).

    CAS  Article  Google Scholar 

  50. Hansen, P. Chapter 4 magnetic amorphous alloys. Handb. Magn. Mater. 6, 289–452 (1991).

    Article  Google Scholar 

  51. Vansteenkiste, A. et al. The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

    Article  CAS  Google Scholar 

  52. Johnson, G. R. et al. Investigations of element spatial correlation in Mn-promoted Co-based Fischer-Tropsch synthesis catalysts. J. Catal. 328, 111–122 (2015).

    CAS  Article  Google Scholar 

  53. Hirata, A. & Chen, M. Angstrom-beam electron diffraction of amorphous materials. J. Non Cryst. Solids 383, 52–58 (2014).

    CAS  Article  Google Scholar 

Download references


We thank M. Baumgartner and C. Murer for fruitful discussions and help with the STXM measurements, and F. Binda for the assistance with the measurements at the vibrating sample magnetometer. We thank R. Erni for collaborating in the analysis of the diffraction measurements. We thank C. Vockenhuber for performing Rutherford backscattering measurements on GdFeCo and TbCo. This research was supported by the Swiss National Science Foundation (grant nos 200020_200465 and PZ00P2-179944) and the Swiss Government Excellence Scholarship (ESKAS no. 2018.0056). The PolLux end station was financed by the German Ministerium für Bildung und Forschung (BMBF) through contracts 05K16WED and 05K19WE2. The work by E.M. and V.R. was supported by the Ministerio de Economía y Competitividad of the Spanish Government (project no. MAT2017-87072-C4-1-P) and by the Consejería de Educación of the Junta de Castilla y Leon (project nos SA299P18 and SA0114P20). We acknowledge the Paul Scherrer Institut, Villigen, Switzerland for provision of synchrotron radiation beamtime at beamline X07DA-PolLux of the Swiss Light Source. We also thank the Helmholtz-Zentrum Berlin for the allocation of synchrotron radiation beamtime at the UE-46 Maxymus beamline.

Author information

Authors and Affiliations



P.G., G.S. and C.-H.L. planned the experiment. G.S., C.-H.L., V.K. and G.K. performed the STXM measurements with the support of S.F., M.W. and J.R.; G.S. characterized the magnetic properties of the full films and devices. E.M. and V.R. developed the micromagnetic code and performed the simulations. M.R. performed the STEM characterization and the nanobeam diffraction measurements. M.R and G.S. analysed the STEM–EDX maps. G.S. and P.G. analysed the data and wrote the manuscript with input from E.M. All authors discussed the data and commented on the manuscript.

Corresponding authors

Correspondence to Giacomo Sala or Pietro Gambardella.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Olena Gomonay, Xuepeng Qiu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–13 and Figs. 1–22.

Supplementary Video 1

Dynamics of type I.

Supplementary Video 2

Dynamics of type II.

Supplementary Video 3

Dynamics of type III.

Supplementary Video 4

Simulation of the dynamics of type I.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sala, G., Lambert, CH., Finizio, S. et al. Asynchronous current-induced switching of rare-earth and transition-metal sublattices in ferrimagnetic alloys. Nat. Mater. 21, 640–646 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing