Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor

Abstract

Semiconductors, featuring tunable electrical transport, and magnets, featuring tunable spin configurations, form the basis of many information technologies. A long-standing challenge has been to realize materials that integrate and connect these two distinct properties. Two-dimensional (2D) materials offer a platform to realize this concept, but known 2D magnetic semiconductors are electrically insulating in their magnetic phase. Here we demonstrate tunable electron transport within the magnetic phase of the 2D semiconductor CrSBr and reveal strong coupling between its magnetic order and charge transport. This provides an opportunity to characterize the layer-dependent magnetic order of CrSBr down to the monolayer via magnetotransport. Exploiting the sensitivity of magnetoresistance to magnetic order, we uncover a second regime characterized by coupling between charge carriers and magnetic defects. The magnetoresistance within this regime can be dynamically and reversibly tuned by varying the carrier concentration using an electrostatic gate, providing a mechanism for controlling charge transport in 2D magnets.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Crystal structure, device fabrication and transport signatures of CrSBr magnetic ordering.
Fig. 2: Magnetoresistance of bilayer and monolayer CrSBr.
Fig. 3: Evidence for coupling between charge transport and magnetic defects in CrSBr.
Fig. 4: Electrostatic control of magnetoresistance in monolayer CrSBr.

Data availability

The data that support the plots within this Article and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS  Article  Google Scholar 

  2. Wilson, N. P. et al. Interlayer electronic coupling on demand in a 2D magnetic semiconductor. Nat. Mater. https://doi.org/10.1038/s41563-021-01070-8 (2021).

  3. Telford, E. J. et al. Layered antiferromagnetism induces large negative magnetoresistance in the van der Waals semiconductor CrSBr. Adv. Mater. 32, 2003240 (2020).

    CAS  Article  Google Scholar 

  4. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    CAS  Article  Google Scholar 

  5. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    CAS  Article  Google Scholar 

  6. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  7. Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS  Article  Google Scholar 

  8. Kim, H. H. et al. Tailored tunnel magnetoresistance response in three ultrathin chromium trihalides. Nano Lett. 19, 5739–5745 (2019).

    CAS  Article  Google Scholar 

  9. Lee, K. et al. Magnetic order and symmetry in the 2D semiconductor CrSBr. Nano Lett. 21, 3511–3517 (2021).

    CAS  Article  Google Scholar 

  10. Chua, R. et al. Can reconstructed Se-deficient line defects in monolayer VSe2 induce magnetism? Adv. Mater. 32, 2000693 (2020).

    CAS  Article  Google Scholar 

  11. Avsar, A. et al. Defect induced, layer-modulated magnetism in ultrathin metallic PtSe2. Nat. Nanotechnol. 14, 674–678 (2019).

    CAS  Article  Google Scholar 

  12. Guguchia, Z. et al. Magnetism in semiconducting molybdenum dichalcogenides. Sci. Adv. 4, eaat3672 (2018).

    CAS  Article  Google Scholar 

  13. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    CAS  Article  Google Scholar 

  14. Verzhbitskiy, I. A. et al. Controlling the magnetic anisotropy in Cr2Ge2Te6 by electrostatic gating. Nat. Electron. 3, 460–465 (2020).

    CAS  Article  Google Scholar 

  15. Zhuo, W. et al. Manipulating ferromagnetism in few‐layered Cr2Ge2Te6. Adv. Mater. 33, 2008586 (2021).

    CAS  Article  Google Scholar 

  16. Göser, O., Paul, W. & Kahle, H. G. Magnetic properties of CrSBr. J. Magn. Magn. Mater. 92, 129–136 (1990).

    Article  Google Scholar 

  17. Beck, J. Über chalkogenidhalogenide des chroms synthese, kristallstruktur und magnetismus von chromsulfidbromid, CrSBr. ZAAC J. Inorg. Gen. Chem. 585, 157–167 (1990).

    CAS  Google Scholar 

  18. Huang, Y. et al. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 9, 10612–10620 (2015).

    CAS  Article  Google Scholar 

  19. Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2016).

    Article  CAS  Google Scholar 

  20. Telford, E. J. et al. Via method for lithography free contact and preservation of 2D materials. Nano Lett. 18, 1416–1420 (2018).

    CAS  Article  Google Scholar 

  21. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Article  Google Scholar 

  22. Alexander, S., Helman, J. S. & Balberg, I. Critical behavior of the electrical resistivity in magnetic systems. Phys. Rev. B 13, 304–315 (1976).

    CAS  Article  Google Scholar 

  23. Balberg, I. & Helman, J. S. Critical behavior of the resistivity in magnetic systems. II. Below Tc and in the presence of a magnetic field. Phys. Rev. B 18, 303–318 (1978).

    CAS  Article  Google Scholar 

  24. Shklovskii, B. I. & Efros, A. L. Electronic Properties of Doped Semiconductors 45 (Springer Berlin Heidelberg, 1984).

  25. Efros, A. L. & Shklovskii, B. I. Coulomb gap and low temperature conductivity of disordered systems. J. Phys C 8, L49 (1975).

  26. Brodowska, B. et al. Magnetoresistance near the ferromagnetic-paramagnetic phase transition in magnetic semiconductors. Appl. Phys. Lett. 93, 42113 (2008).

    Article  CAS  Google Scholar 

  27. Majumdar, P. & Littlewood, P. B. Dependence of magnetoresistivity on charge-carrier density in metallic ferromagnets and doped magnetic semiconductors. Nature 395, 479–481 (1998).

    CAS  Article  Google Scholar 

  28. Lin, Z. et al. Pressure-induced spin reorientation transition in layered ferromagnetic insulator Cr2Ge2Te6. Phys. Rev. Mater. 2, 051004 (2018).

    CAS  Article  Google Scholar 

  29. López-Cabrelles, J. et al. Chemical design and magnetic ordering in thin layers of 2D metal–organic frameworks (MOFs). J. Am. Chem. Soc. 143, 18502–18510 (2021).

    Article  CAS  Google Scholar 

  30. Shukla, A., Lebedev, O. I., Seikh, M. M. & Kundu, A. K. Structural and magnetic characterization of spin canted mixed ferrite-cobaltites: LnFe0.5Co0.5O3 (Ln = Eu and Dy). J. Magn. Magn. Mater. 491, 165558 (2019).

  31. Yildiz, F., Przybylski, M. & Kirschner, J. Direct evidence of a nonorthogonal magnetization configuration in single crystalline Fe1–xCox / Rh / Fe / Rh(001) system. Phys. Rev. Lett. 103, 147203 (2009).

  32. Durst, A. C., Bhatt, R. N. & Wolff, P. A. Bound magnetic polaron interactions in insulating doped diluted magnetic semiconductors. Phys. Rev. B 65, 235205 (2002).

    Article  CAS  Google Scholar 

  33. Mcguire, T. R. & Potter, R. I. Anisotropic magnetoresistance in ferromagnetic 3D alloys. IEEE Trans. Magn. 11, 1018–1038 (1975).

    Article  Google Scholar 

  34. Jansson, F. et al. Large positive magnetoresistance effects in the dilute magnetic semiconductor (Zn,Mn)Se in the regime of electron hopping. J. Appl. Phys. 116, 083710 (2014).

    Article  CAS  Google Scholar 

  35. Wang, J. et al. Giant magnetoresistance in transition-metal-doped ZnO films. Appl. Phys. Lett. 88, 252110 (2006).

    Article  CAS  Google Scholar 

  36. Mukherjee, D., Dhakal, T., Srikanth, H., Mukherjee, P. & Witanachchi, S. Evidence for carrier-mediated magnetism in Mn-doped ZnO thin films. Phys. Rev. B 81, 205202 (2010).

    Article  CAS  Google Scholar 

  37. Coey, J. M. D., Venkatesan, M. & Fitzgerald, C. B. Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173–179 (2005).

    CAS  Article  Google Scholar 

  38. Kittilstved, K. R., Liu, W. K. & Gamelin, D. R. Electronic structure origins of polarity-dependent high-Tc ferromagnetism in oxide-diluted magnetic semiconductors. Nat. Mater. 5, 291–297 (2006).

    CAS  Article  Google Scholar 

  39. Liu, L. & Liu, J. T. C. Theory of the bound magnetic polaron in antiferromagnetic semiconductors. Phys. Rev. B 33, 1797–1803 (1986).

    CAS  Article  Google Scholar 

  40. Mauger, A. Magnetic polaron: theory and experiment. Phys. Rev. B 27, 2308–2324 (1983).

    CAS  Article  Google Scholar 

  41. Shon, W., Rhyee, J. S., Jin, Y. & Kim, S. J. Magnetic polaron and unconventional magnetotransport properties of the single-crystalline compound EuBiTe3. Phys. Rev. B 100, 024433 (2019).

    CAS  Article  Google Scholar 

  42. Xu, Q. et al. Magnetoresistance and anomalous Hall effect in magnetic ZnO films. J. Appl. Phys. 101, 063918 (2007).

    Article  CAS  Google Scholar 

  43. Andrearczyk, T. et al. Spin-related magnetoresistance of n-type ZnO:Al and Zn1–xMnxO:Al thin films. Phys. Rev. B 72, 121309 (2005).

    Article  CAS  Google Scholar 

  44. Bellingeri, E. et al. Influence of free charge carrier density on the magnetic behavior of (Zn,Co)O thin film studied by field effect modulation of magnetotransport. Sci. Rep. 9, 149 (2019).

  45. Xing, G. Z., Yi, J. B., Yan, F., Wu, T. & Li, S. Positive magnetoresistance in ferromagnetic Nd-doped In2O3 thin films grown by pulse laser deposition. Appl. Phys. Lett. 104, 202411 (2014).

    Article  CAS  Google Scholar 

  46. Yang, Z. et al. Electron carrier concentration dependent magnetization and transport properties in ZnO:Co diluted magnetic semiconductor thin films. J. Appl. Phys. 104, 113712 (2008).

    Article  CAS  Google Scholar 

  47. Novoselov, K. S. et al. Electric field in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Article  Google Scholar 

  48. Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank J. Pack for his help in using the double-axis rotator for the field-direction-dependent transport measurements. We thank T.-D. Li for help performing the X-ray photoelectron spectroscopy measurements. We also thank J. Xiao for helpful discussions in interpreting our transport data. Research on magnetotransport properties of van der Waals magnetic semiconductors was supported as part of Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences, under award DE-SC0019443. Neutron scattering experiments were performed at the Spallation Neutron Source, a Department of Energy Office of Science User Facility operated by Oak Ridge National Laboratory. A.H.D. was supported by the National Science Foundation graduate research fellowship programme (DGE 16-44869). R.A.W. was supported by the Arnold O. Beckman Fellowship in Chemical Sciences. The Columbia University Shared Materials Characterization Laboratory was used extensively for this research. We are grateful to Columbia University for the support of this facility. The PPMS system used to perform vibrating sample magnetometry and some of the transport measurements was purchased with financial support from the National Science Foundation through a supplement to award DMR-1751949. The electron microscopic work performed at Brookhaven National Laboratory was sponsored by the US Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division, under contract no. DE-SC0012704. The X-ray photoelectron microscopy was performed at the Surface Science Core Facility in Advanced Science Research Center of City University of New York.

Author information

Authors and Affiliations

Authors

Contributions

E.J.T. and A.H.D. prepared the CrSBr flakes. E.J.T. and A.H.D. performed the optical contrast calibration and atomic force microscopy measurements. E.J.T. and R.L.D. fabricated the transport devices and performed the transport measurements. A.H.D. synthesized the bulk crystals. E.J.T. and K.L. performed the Raman spectroscopy measurements. E.J.T., A.H.D. and R.A.W. performed the vibrating sample magnetometry measurements. E.J.T. performed the oxidation measurements. M.-G.H. and Y.Z. performed the transmission electron microscopy imaging. S.S. and A.N.P. performed the scanning tunnelling microscopy measurements. A.H.D. and E.J.T. performed the scanning electron microscopy imaging and energy-dispersive X-ray analysis. All authors contributed to analysing the data and writing the manuscript.

Corresponding authors

Correspondence to Cory R. Dean or Xavier Roy.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ahmet Avsar and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Telford, E.J., Dismukes, A.H., Dudley, R.L. et al. Coupling between magnetic order and charge transport in a two-dimensional magnetic semiconductor. Nat. Mater. 21, 754–760 (2022). https://doi.org/10.1038/s41563-022-01245-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01245-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing