Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection

Abstract

Optical nanoparticles are promising diagnostic tools; however, their shallow optical imaging depth and slow clearance from the body have impeded their use for in vivo disease detection. To address these limitations, we develop activatable polyfluorophore nanosensors with biomarker-triggered nanoparticle-to-molecule pharmacokinetic conversion and near-infrared fluorogenic turn-on response. Activatable polyfluorophore nanosensors can accumulate at the disease site and react with disease-associated proteases to undergo in situ enzyme-catalysed depolymerization. This disease-specific interaction liberates renal-clearable fluorogenic fragments from activatable polyfluorophore nanosensors for non-invasive longitudinal urinalysis and outperforms the gold standard blood and urine assays, providing a level of sensitivity and specificity comparable to those of invasive biopsy and flow cytometry analysis. In rodent models, activatable polyfluorophore nanosensors enable ultrasensitive detection of tumours (1.6 mm diameter) and early diagnosis of acute liver allograft rejection. We anticipate that our modular nanosensor platform may be applied for early diagnosis of a range of diseases via a simple urine test.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Design and mechanisms of renal-clearable polyfluorophore nanosensors for early diagnosis of cancer and acute liver allograft rejection.
Fig. 2: In vitro sensing evaluation of APNs.
Fig. 3: Biodistribution and clearance pathway of APNs and their activated fragments.
Fig. 4: Real-time imaging and urinalysis of orthotopic liver cancer.
Fig. 5: Real-time imaging and longitudinal urinalysis of acute immune-mediated hepatitis.
Fig. 6: Longitudinal optical urinalysis of acute liver allograft rejection in living rats.

Data availability

Source data are provided with this paper. The authors declare that data generated or analysed during this study are provided as source data or included in the Supplementary Information. Further data are available from the corresponding authors upon request.

References

  1. Park, S. M., Aalipour, A., Vermesh, O., Yu, J. H. & Gambhir, S. S. Towards clinically translatable in vivo nanodiagnostics. Nat. Rev. Mater. 2, 17014 (2017).

    CAS  Article  Google Scholar 

  2. Lovell, J. F. et al. Porphysome nanovesicles generated by porphyrin bilayers for use as multimodal biophotonic contrast agents. Nat. Mater. 10, 324–332 (2011).

    CAS  Article  Google Scholar 

  3. Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).

    CAS  Article  Google Scholar 

  4. Zhou, W., Han, Y., Beliveau, B. J. & Gao, X. Combining Qdot nanotechnology and DNA nanotechnology for sensitive single‐cell imaging. Adv. Mater. 32, 1908410 (2020).

    CAS  Article  Google Scholar 

  5. Li, J. et al. Dramatic enhancement of the detection limits of bioassays via ultrafast deposition of polydopamine. Nat. Biomed. Eng. 1, 0082 (2017).

    CAS  Article  Google Scholar 

  6. Liang, K. et al. Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring. Nat. Biomed. Eng. 1, 0021 (2017).

    CAS  Article  Google Scholar 

  7. The risks of nanomaterial risk assessment. Nat. Nanotechnol. 15, 163–163 (2020).

    Article  CAS  Google Scholar 

  8. Lu, Y., Aimetti, A. A., Langer, R. & Gu, Z. Bioresponsive materials. Nat. Rev. Mater. 2, 16075 (2016).

    Article  CAS  Google Scholar 

  9. Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).

    Article  Google Scholar 

  10. Tsoi, K. M. et al. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater. 15, 1212–1221 (2016).

    CAS  Article  Google Scholar 

  11. Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).

    CAS  Article  Google Scholar 

  12. Yu, M. X. & Zheng, J. Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9, 6655–6674 (2015).

    CAS  Article  Google Scholar 

  13. Du, B. et al. Glomerular barrier behaves as an atomically precise bandpass filter in a sub-nanometre regime. Nat. Nanotechnol. 12, 1096–1102 (2017).

    CAS  Article  Google Scholar 

  14. Choi, H. S. et al. Renal clearance of nanoparticles. Nat. Biotechnol. 10, 1165–1170 (2007).

    Article  CAS  Google Scholar 

  15. Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).

    CAS  Article  Google Scholar 

  16. Perrault, S. D. & Chan, W. C. In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc. Natl Acad. Sci. USA 107, 11194–11199 (2010).

    CAS  Article  Google Scholar 

  17. Zhao, T. et al. A transistor-like pH nanoprobe for tumour detection and image-guided surgery. Nat. Biomed. Eng. 1, 0006 (2016).

    Article  CAS  Google Scholar 

  18. Yuan, Y. et al. Intracellular self-assembly of cyclic d-luciferin nanoparticles for persistent bioluminescence imaging of fatty acid amide hydrolase. ACS Nano 10, 7147–7153 (2016).

    CAS  Article  Google Scholar 

  19. Gao, Y., Shi, J., Yuan, D. & Xu, B. Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat. Commun. 3, 1033 (2012).

    Article  CAS  Google Scholar 

  20. Ye, D. et al. Bioorthogonal cyclization-mediated in situ self-assembly of small-molecule probes for imaging caspase activity in vivo. Nat. Chem. 6, 519 (2014).

    CAS  Article  Google Scholar 

  21. Yuan, Y. et al. Furin-mediated intracellular self-assembly of olsalazine nanoparticles for enhanced magnetic resonance imaging and tumour therapy. Nat. Mater. 18, 1376–1383 (2019).

    CAS  Article  Google Scholar 

  22. Xie, C., Zhen, X., Lyu, Y. & Pu, K. Nanoparticle regrowth enhances photoacoustic signals of semiconducting macromolecular probe for in vivo imaging. Adv. Mater. 29, 1703693 (2017).

    Article  CAS  Google Scholar 

  23. Huynh, E. et al. In situ conversion of porphyrin microbubbles to nanoparticles for multimodality imaging. Nat. Nanotechnol. 10, 325–332 (2015).

    CAS  Article  Google Scholar 

  24. Kwon, E. J., Dudani, J. S. & Bhatia, S. N. Ultrasensitive tumour-penetrating nanosensors of protease activity. Nat. Biomed. Eng. 1, 0054 (2017).

    CAS  Article  Google Scholar 

  25. Loynachan, C. N. et al. Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. Nat. Nanotechnol. 14, 883–890 (2019).

    CAS  Article  Google Scholar 

  26. Jiang, X., Du, B. & Zheng, J. Glutathione-mediated biotransformation in the liver modulates nanoparticle transport. Nat. Nanotechnol. 14, 874–882 (2019).

    CAS  Article  Google Scholar 

  27. Verdoes, M. et al. Improved quenched fluorescent probe for imaging of cysteine cathepsin activity. J. Am. Chem. Soc. 135, 14726–14730 (2013).

    CAS  Article  Google Scholar 

  28. He, S., Li, J., Lyu, Y., Huang, J. & Pu, K. Near-infrared fluorescent macromolecular reporters for real-time imaging and urinalysis of cancer immunotherapy. J. Am. Chem. Soc. 142, 7075–7082 (2020).

    CAS  Article  Google Scholar 

  29. Pashayan, N. & Pharoah, P. D. The challenge of early detection in cancer. Science 368, 589–590 (2020).

    CAS  Article  Google Scholar 

  30. Wood, K. J., Bushell, A. & Hester, J. Regulatory immune cells in transplantation. Nat. Rev. Immunol. 12, 417–430 (2012).

    CAS  Article  Google Scholar 

  31. Tiegs, G., Hentschel, J. & Wendel, A. A T cell-dependent experimental liver injury in mice inducible by concanavalin A. J. Clin. Invest. 90, 196–203 (1992).

    CAS  Article  Google Scholar 

  32. Yamashita, J. et al. Apolipoprotein A-II suppressed concanavalin A-induced hepatitis via the inhibition of CD4 T cell function. J. Immunol. 186, 3410–3420 (2011).

    CAS  Article  Google Scholar 

  33. Lechler, R. I., Sykes, M., Thomson, A. W. & Turka, L. A. Organ transplantation—how much of the promise has been realized? Nat. Med. 11, 605–613 (2005).

    CAS  Article  Google Scholar 

  34. Jones, K. D. & Ferrell, L. D. Interpretation of biopsy findings in the transplant liver. Semin. Diagn. Pathol. 15, 306–317 (1998).

    CAS  Google Scholar 

  35. Portmann, B., Slapak, G., Gane, E. & Williams, R. Pathology and biopsy diagnosis of the transplanted liver. Verh. Dtsch Ges. Pathol. 79, 277–290 (1995).

    CAS  Google Scholar 

  36. Welt, S. et al. Antibody targeting in metastatic colon cancer: a phase I study of monoclonal antibody F19 against a cell-surface protein of reactive tumor stromal fibroblasts. J. Clin. Oncol. 12, 1193–1203 (1994).

    CAS  Article  Google Scholar 

  37. Erdi, Y. E. Limits of tumor detectability in nuclear medicine and PET. Mol. Imaging Radionucl. Ther. 21, 23–28 (2012).

    Article  Google Scholar 

  38. Serres, S. et al. Molecular MRI enables early and sensitive detection of brain metastases. Proc. Natl Acad. Sci. USA 109, 6674–6679 (2012).

    CAS  Article  Google Scholar 

  39. Kwong, G. A. et al. Mass-encoded synthetic biomarkers for multiplexed urinary monitoring of disease. Nat. Biotechnol. 31, 63–70 (2013).

    CAS  Article  Google Scholar 

  40. Soleimany, A. P. & Bhatia, S. N. Activity-based diagnostics: an emerging paradigm for disease detection and monitoring. Trends Mol. Med. 26, 450–468 (2020).

    CAS  Article  Google Scholar 

  41. Aalipour, A. et al. Engineered immune cells as highly sensitive cancer diagnostics. Nat. Biotechnol. 37, 531–539 (2019).

    CAS  Article  Google Scholar 

  42. Kirkpatrick, J. D. et al. Urinary detection of lung cancer in mice via noninvasive pulmonary protease profiling. Sci. Transl. Med. 12, eaaw0262 (2020).

    CAS  Article  Google Scholar 

  43. Dravid, V. et al. Arterial abnormalities following orthotopic liver transplantation: arteriographic findings and correlation with Doppler sonographic findings. Am. J. Roentgenol. 163, 585–589 (1994).

    CAS  Article  Google Scholar 

  44. Ogura, Y. et al. Radiolabeled annexin V imaging: diagnosis of allograft rejection in an experimental rodent model of liver transplantation. Radiology 214, 795–800 (2000).

    CAS  Article  Google Scholar 

  45. Shah, A. N., Dodson, F. & Fung, J. Role of nuclear medicine in liver transplantation. Semin. Nucl. Med. 25, 36–48 (1995).

    CAS  Article  Google Scholar 

  46. Huang, J., Li, J., Lyu, Y., Miao, Q. & Pu, K. Molecular optical imaging probes for early diagnosis of drug-induced acute kidney injury. Nat. Mater. 18, 1133–1143 (2019).

    CAS  Article  Google Scholar 

  47. Benson, R. C. & Kues, H. A. Absorption and fluorescence properties of cyanine dyes. J. Chem. Eng. Data 22, 379–383 (1977).

    CAS  Article  Google Scholar 

  48. Gu, K. et al. Real-time tracking and in vivo visualization of β-galactosidase activity in colorectal tumor with a ratiometric near-infrared fluorescent probe. J. Am. Chem. Soc. 138, 5334–5340 (2016).

    CAS  Article  Google Scholar 

  49. Hu, J. J. et al. Fluorescent probe HKSOX-1 for imaging and detection of endogenous superoxide in live cells and in vivo. J. Am. Chem. Soc. 137, 6837–6843 (2015).

    CAS  Article  Google Scholar 

  50. Hee Ryu, J. et al. Cathepsin B-sensitive nanoprobe for in vivo tumor diagnosis. J. Mater. Chem. 21, 17631–17634 (2011).

    Article  CAS  Google Scholar 

  51. Ding, Y. et al. Tumor microenvironment-responsive multifunctional peptide coated ultrasmall gold nanoparticles and their application in cancer radiotherapy. Theranostics 10, 5195–5208 (2020).

    CAS  Article  Google Scholar 

  52. Kamada, N. & Calne, R. Y. Orthotopic liver transplantation in the rat. Technique using cuff for portal vein anastomosis and biliary drainage. Transplantation 28, 47–50 (1979).

    CAS  Article  Google Scholar 

  53. Guo, L. et al. Significant enhancement by anti‐ICOS antibody of suboptimal tacrolimus immunosuppression in rat liver transplantation. Liver Transplant. 10, 743–747 (2004).

    Article  Google Scholar 

  54. Medicherla, S. et al. Topical alpha-selective p38 MAP kinase inhibition reduces acute skin inflammation in guinea pig. J. Inflamm. Res. 3, 9–16 (2010).

    CAS  Article  Google Scholar 

  55. Wang, W. et al. Prostacyclin in endotoxemia-induced acute kidney injury: cyclooxygenase inhibition and renal prostacyclin synthase transgenic mice. Am. J. Physiol. Ren. Physiol. 293, F1131–F1136 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

K.P. thanks the Ministry of Education Singapore, Academic Research Fund Tier 1 (2019-T1-002-045 RG125/19 and RT05/20) and Academic Research Fund Tier 2 (MOE2018-T2-2-042 and MOE-T2EP30220-0010) for financial support. H.W. thanks the Zhejiang Provincial Natural Science Foundation of China (LR19H160002) and the National Natural Science Foundation of China (82073296 and 81773193) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and K.P. conceived and designed the study. J.H. performed the probe synthesis and in vivo experiments. X.C., Y.J. and J.H. performed the flow cytometry and histology experiments. Y.J., C.Z. and S.H. performed cell imaging experiments. J.H., H.W. and K.P. analysed the data. J.H. and K. P. drafted the manuscript. All authors contributed to the writing of this article.

Corresponding author

Correspondence to Kanyi Pu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Hak Soo Choi and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–38 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 2

Data for spectrum, selectivity studies, HPLC spectrum and so on.

Source Data Fig. 3

Data for NIRF intensity in liver and kidney, residual probes in livers and blood, clearance efficiencies and so on.

Source Data Fig. 4

Data for NIRF intensity in urine, liver and kidneys, data for liver and kidney function tests and so on.

Source Data Fig. 5

Data for NIRF intensity of liver and kidneys, signal enhancement in urine, flow cytometry and cytokines and so on.

Source Data Fig. 6

Data for NIRF intensity in urine, liver and kidneys, data for ROC curves and so on.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Chen, X., Jiang, Y. et al. Renal clearable polyfluorophore nanosensors for early diagnosis of cancer and allograft rejection. Nat. Mater. 21, 598–607 (2022). https://doi.org/10.1038/s41563-022-01224-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01224-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing