Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires

Abstract

Chiral materials are an ideal playground for exploring the relation between symmetry, relativistic effects and electronic transport. For instance, chiral organic molecules have been intensively studied to electrically generate spin-polarized currents in the last decade, but their poor electronic conductivity limits their potential for applications. Conversely, chiral inorganic materials such as tellurium have excellent electrical conductivity, but their potential for enabling the electrical control of spin polarization in devices remains unclear. Here, we demonstrate the all-electrical generation, manipulation and detection of spin polarization in chiral single-crystalline tellurium nanowires. By recording a large (up to 7%) and chirality-dependent unidirectional magnetoresistance, we show that the orientation of the electrically generated spin polarization is determined by the nanowire handedness and uniquely follows the current direction, while its magnitude can be manipulated by an electrostatic gate. Our results pave the way for the development of magnet-free chirality-based spintronic devices.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Crystallographic characterization, electronic band structure and spin texture of Te NWs.
Fig. 2: Magnetoelectrical characterization of a Te NW.
Fig. 3: Unidirectional magnetoresistance in right- and left-handed Te NWs.
Fig. 4: Gate modulation of the unidirectional magnetoresistance and comparison with theory.

Data availability

Source data are provided with this paper. Any further data are available from the corresponding authors upon reasonable request.

Code availability

The computational codes used in this study to obtain the transport properties are available from the corresponding authors upon reasonable request. The Te band structure ab initio calculations were performed using VASP (https://www.vasp.at/). The results are provided with this paper.

References

  1. Sinova, J., Valenzuela, S. O., Wunderlich, J., Back, C. H. & Jungwirth, T. Spin Hall effects. Rev. Mod. Phys. 87, 1213–1260 (2015).

    Article  Google Scholar 

  2. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  3. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  Article  Google Scholar 

  4. Manipatruni, S. et al. Scalable energy-efficient magnetoelectric spin–orbit logic. Nature 565, 35–42 (2019).

    CAS  Article  Google Scholar 

  5. Pham, V. T. et al. Spin–orbit magnetic state readout in scaled ferromagnetic/heavy metal nanostructures. Nat. Electron. 3, 309–315 (2020).

    CAS  Article  Google Scholar 

  6. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    CAS  Article  Google Scholar 

  7. Grimaldi, E. et al. Single-shot dynamics of spin–orbit torque and spin transfer torque switching in three-terminal magnetic tunnel junctions. Nat. Nanotechnol. 15, 111–117 (2020).

    CAS  Article  Google Scholar 

  8. Threshold, H. T. C. Spin-galvanic effect. Nature 417, 153–156 (2002).

    Article  CAS  Google Scholar 

  9. Kato, Y. K., Myers, R. C., Gossard, A. C. & Awschalom, D. D. Current-induced spin polarization in strained semiconductors. Phys. Rev. Lett. 93, 8–11 (2004).

    Google Scholar 

  10. Sánchez, J. C. R. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    Article  CAS  Google Scholar 

  11. Li, Y. et al. Nonreciprocal charge transport up to room temperature in bulk Rashba semiconductor α-GeTe. Nat. Commun. 12, 540 (2021).

    CAS  Article  Google Scholar 

  12. Ishizaka, K. et al. Giant Rashba-type spin splitting in bulk BiTeI. Nat. Mater. 10, 521–526 (2011).

    CAS  Article  Google Scholar 

  13. Rojas-Sánchez, J.-C. et al. Spin to charge conversion at room temperature by spin pumping into a new type of topological insulator: α-Sn films. Phys. Rev. Lett. 116, 096602 (2016).

    Article  CAS  Google Scholar 

  14. Kondou, K. et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

    CAS  Article  Google Scholar 

  15. Culcer, D. & Winkler, R. Generation of spin currents and spin densities in systems with reduced symmetry. Phys. Rev. Lett. 99, 226601 (2007).

    Article  CAS  Google Scholar 

  16. Seemann, M., Ködderitzsch, D., Wimmer, S. & Ebert, H. Symmetry-imposed shape of linear response tensors. Phys. Rev. B 92, 155138 (2015).

    Article  CAS  Google Scholar 

  17. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    CAS  Article  Google Scholar 

  18. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    CAS  Article  Google Scholar 

  19. MacNeill, D. et al. Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers. Nat. Phys. 13, 300–305 (2017).

    CAS  Article  Google Scholar 

  20. Safeer, C. K. et al. Large multidirectional spin-to-charge conversion in low-symmetry semimetal MoTe2 at room temperature. Nano Lett. 19, 8758–8766 (2019).

    CAS  Article  Google Scholar 

  21. Stiehl, G. M. et al. Layer-dependent spin-orbit torques generated by the centrosymmetric transition metal dichalcogenide β–MoTe2. Phys. Rev. B 100, 184402 (2019).

    CAS  Article  Google Scholar 

  22. Shi, S. et al. All-electric magnetization switching and Dzyaloshinskii–Moriya interaction in WTe2/ferromagnet heterostructures. Nat. Nanotechnol. 14, 945–949 (2019).

    CAS  Article  Google Scholar 

  23. Zhao, B. et al. Unconventional charge–spin conversion in Weyl‐semimetal WTe2. Adv. Mater. 32, 2000818 (2020).

    CAS  Article  Google Scholar 

  24. Liu, Y. & Shao, Q. Two-dimensional materials for energy-efficient spin–orbit torque devices. ACS Nano 14, 9389–9407 (2020).

    CAS  Article  Google Scholar 

  25. Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    CAS  Article  Google Scholar 

  26. Liu, Y., Xiao, J., Koo, J. & Yan, B. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20, 638–644 (2021).

    CAS  Article  Google Scholar 

  27. Yang, S.-H., Naaman, R., Paltiel, Y. & Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 3, 328–343 (2021).

    Article  Google Scholar 

  28. Suda, M. et al. Light-driven molecular switch for reconfigurable spin filters. Nat. Commun. 10, 2455 (2019).

    Article  CAS  Google Scholar 

  29. Rikken, G. L. J. A., Fölling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    CAS  Article  Google Scholar 

  30. Yoda, T., Yokoyama, T. & Murakami, S. Current-induced orbital and spin magnetizations in crystals with helical structure. Sci. Rep. 5, 12024 (2015).

    Article  Google Scholar 

  31. Inui, A. et al. Chirality-induced spin-polarized state of a chiral crystal CrNb3S6. Phys. Rev. Lett. 124, 166602 (2020).

    CAS  Article  Google Scholar 

  32. Shiota, K. et al. Chirality-induced spin polarization over macroscopic distances in chiral disilicide crystals. Phys. Rev. Lett. 127, 126602 (2021).

    CAS  Article  Google Scholar 

  33. Dong, Z. & Ma, Y. Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy. Nat. Commun. 11, 1588 (2020).

    CAS  Article  Google Scholar 

  34. Ben-moshe, A. et al. The chain of chirality transfer in tellurium nanocrystals. Science 733, 729–733 (2021).

    Article  CAS  Google Scholar 

  35. Mayers, B. & Xia, Y. One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach. J. Mater. Chem. 12, 1875–1881 (2002).

    CAS  Article  Google Scholar 

  36. Wang, Y. et al. Field-effect transistors made from solution-grown two-dimensional tellurene. Nat. Electron. 1, 228–236 (2018).

    Article  Google Scholar 

  37. Vorob’ev, L. E. et al. Optical activity in tellurium induced by a current. Sov. J. Exp. Theor. Phys. Lett. 29, 441–445 (1979).

    Google Scholar 

  38. Shalygin, V. A., Sofronov, A. N., Vorob’ev, L. E. & Farbshtein, I. I. Current-induced spin polarization of holes in tellurium. Phys. Solid State 54, 2362–2373 (2012).

    CAS  Article  Google Scholar 

  39. Furukawa, T., Shimokawa, Y., Kobayashi, K. & Itou, T. Observation of current-induced bulk magnetization in elemental tellurium. Nat. Commun. 8, 954 (2017).

    Article  CAS  Google Scholar 

  40. Furukawa, T., Watanabe, Y., Ogasawara, N., Kobayashi, K. & Itou, T. Current-induced magnetization caused by crystal chirality in nonmagnetic elemental tellurium. Phys. Rev. Res. 3, 023111 (2021).

    CAS  Article  Google Scholar 

  41. Vaz, D. C. et al. Determining the Rashba parameter from the bilinear magnetoresistance response in a two-dimensional electron gas. Phys. Rev. Mater. 4, 071001 (2020).

    CAS  Article  Google Scholar 

  42. Dyrdał, A., Barnaś, J. & Fert, A. Spin-momentum-locking inhomogeneities as a source of bilinear magnetoresistance in topological insulators. Phys. Rev. Lett. 124, 046802 (2020).

    Article  Google Scholar 

  43. He, P. et al. Bilinear magnetoelectric resistance as a probe of three-dimensional spin texture in topological surface states. Nat. Phys. 14, 495–499 (2018).

    CAS  Article  Google Scholar 

  44. Guillet, T. et al. Observation of large unidirectional Rashba magnetoresistance in Ge(111). Phys. Rev. Lett. 124, 027201 (2020).

    CAS  Article  Google Scholar 

  45. Sakano, M. et al. Radial spin texture in elemental tellurium with chiral crystal structure. Phys. Rev. Lett. 124, 136404 (2020).

    CAS  Article  Google Scholar 

  46. Gatti, G. et al. Radial spin texture of the Weyl fermions in chiral tellurium. Phys. Rev. Lett. 125, 216402 (2020).

    CAS  Article  Google Scholar 

  47. Zhang, N. et al. Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium. Proc. Natl Acad. Sci. USA 117, 11337–11343 (2020).

    CAS  Article  Google Scholar 

  48. Epstein, A. S., Fritzsche, H. & Lark-Horovitz, K. Electrical properties of tellurium at the melting point and in the liquid state. Phys. Rev. 107, 412–419 (1957).

    CAS  Article  Google Scholar 

  49. He, P. et al. Observation of out-of-plane spin texture in a SrTiO3(111) two-dimensional electron gas. Phys. Rev. Lett. 120, 266802 (2018).

    CAS  Article  Google Scholar 

  50. Vaz, D. C. et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 18, 1187–1193 (2019).

    CAS  Article  Google Scholar 

  51. Qiu, G. et al. Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene. Nat. Nanotechnol. 15, 585–591 (2020).

    CAS  Article  Google Scholar 

  52. Roy, M., Sen, S., Gupta, S. K. & Tyagi, A. K. Comment on high-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process. Langmuir 23, 10873 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Spanish Ministerio de Ciencia e Innovación (MICINN) under projects RTI2018-094861-B-100 and PID2019-108153GA-I00 and under the Maria de Maeztu Units of Excellence Programme (MDM-2016-0618); by the European Union Horizon 2020 under the Marie Slodowska-Curie Actions (0766025-QuESTech and 892983-SPECTER); and by Intel Corporation under ‘FEINMAN’ and ‘VALLEYTRONICS’ Intel Science Technology Centers. B.M.-G. acknowledges support from the Gipuzkoa Council (Spain) in the frame of the Gipuzkoa Fellows Program. M.S.-R. acknowledges support from La Caixa Foundation (no. 100010434) with code LCF/BQ/DR21/11880030. M.G. acknowledges support from La Caixa Foundation (no. 100010434) for a Junior Leader fellowship (grant no. LCF/BQ/PI19/11690017). A.J. acknowledges support from CRC/TRR 227 of Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Contributions

F. Calavalle, M.G., F. Casanova and L.E.H. conceived the study. F. Calavalle and M.S.-R. fabricated the samples and performed the magnetotransport measurements with the help of D.C.V. and H.Y.; B.M.-G. synthetized the Te NWs with the support of A.M.-A., and A.C. performed the STEM analysis. A.J. conducted the theoretical calculations with the support of I.M.; I.V.M. and S.O. performed the ab initio calculations. F. Calavalle and M.G. wrote the manuscript with input from all authors. All authors contributed to the discussion of the results and their interpretation.

Corresponding authors

Correspondence to Marco Gobbi, Fèlix Casanova or Luis E. Hueso.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Evgeny Tsymbal, See Hun Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Sections 1–11.

Supplementary Data 1

Te band structure.

Source data

Source Data Fig. 2

Experimental data.

Source Data Fig. 3

Experimental data.

Source Data Fig. 4

Experimental data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Calavalle, F., Suárez-Rodríguez, M., Martín-García, B. et al. Gate-tuneable and chirality-dependent charge-to-spin conversion in tellurium nanowires. Nat. Mater. 21, 526–532 (2022). https://doi.org/10.1038/s41563-022-01211-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01211-7

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing