Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Universal scaling law of glass rheology

Subjects

Abstract

The similarity in atomic/molecular structure between liquids and glasses has stimulated a long-standing hypothesis that the nature of glasses may be more fluid-like, rather than the apparent solid. In principle, the nature of glasses can be characterized by the dynamic response of their rheology in a wide rate range, but this has not been realized experimentally, to the best of our knowledge. Here we report the dynamic response of shear stress to the shear strain rate of metallic glasses over a timescale of nine orders of magnitude, equivalent to hundreds of years, by broadband stress relaxation experiments. The dynamic response of the metallic glasses, together with other ‘glasses’, follows a universal scaling law within the framework of fluid dynamics. The universal scaling law provides comprehensive validation of the conjecture on the jamming (dynamic) phase diagram by which the dynamic behaviours of a wide variety of ‘glasses’ can be unified under one rubric parameterized by the thermodynamic variables of temperature, volume and stress in the trajectory space.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Broadband relaxation experiments of a Zr55Cu30Al10Ni5 glass.
Fig. 2: Strain-rate/stress behaviour and universal scaling law of glass rheology.
Fig. 3: Dynamic transition phase diagram based on the universal law derived from the broadband relaxation measurements.

Data availability

The authors declare that the data supporting the findings of this study are included within the paper and its Supplementary Information file. Source data are provided with this paper.

References

  1. Frost, H. J. & Ashby, M. F. Deformation-Mechanicsm Maps: the Plasticity and Creep of Metals and Ceramics 165 (Pergamon Press, 1982).

  2. Anderson, P. W. Through the glass lightly. Science 267, 1615–1616 (1995).

    CAS  Google Scholar 

  3. Langer, J. The mysterious glass transition. Phys. Today 60, 8 (2007).

  4. Ediger, M. D. & Harrowell, P. Perspective: supercooled liquids and glasses. J. Chem. Phys. 137, 080901 (2012).

    CAS  Google Scholar 

  5. Wang, W. H. Dynamic relaxations and relaxation-property relationships in metallic glasses. Prog. Mater. Sci. 106, 100561 (2019).

    CAS  Google Scholar 

  6. Chang, K. The nature of glass remains anything but clear. The New York Times https://www.nytimes.com/2008/07/29/science/29glass.html (29 July 2008).

  7. Williams, M. L., Landel, R. F. & Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J. Am. Chem. Soc. 77, 3701–3707 (1955).

    CAS  Google Scholar 

  8. Zhu, F. et al. Correlation between local structure order and spatial heterogeneity in a metallic glass. Phys. Rev. Lett. 119, 215501 (2017).

    Google Scholar 

  9. Huang, B. et al. Density fluctuations with fractal order in metallic glasses detected by synchrotron X-ray nano-computed tomography. Acta Mater. 155, 69–79 (2018).

    CAS  Google Scholar 

  10. Argon, A. S. Plastic-deformation in metallic glasses. Acta Metall. 27, 47–58 (1979).

    CAS  Google Scholar 

  11. Spaepen, F. A microscopic mechanism for steady-state inhomogeneous flow in metallic glasses. Acta Metall. 25, 407–415 (1977).

    CAS  Google Scholar 

  12. Johnson, W. L. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    CAS  Google Scholar 

  13. Chen, M. W. Mechanical behavior of metallic glasses: microscopic understanding of strength and ductility. Ann. Rev. Mater. Res. 38, 445–469 (2008).

    CAS  Google Scholar 

  14. Falk, M. L., Langer, J. S. & Pechenik, L. Thermal effects in the shear-transformation-zone theory of amorphous plasticity: comparisons to metallic glass data. Phys. Rev. E 70, 011507 (2004).

    CAS  Google Scholar 

  15. Hufnagel, T. C., Schuh, C. A. & Falk, M. L. Deformation of metallic glasses: recent developments in theory, simulations, and experiments. Acta Mater. 109, 375–393 (2016).

    CAS  Google Scholar 

  16. Ju, J. D., Jang, D., Nwankpa, A. & Atzmon, M. An atomically quantized hierarchy of shear transformation zones in a metallic glass. J. Appl. Phys. 109, 053522 (2011).

    Google Scholar 

  17. Pan, D., Inoue, A., Sakurai, T. & Chen, M. W. Experimental characterization of shear transformation zones for plastic flow of bulk metallic glasses. Proc. Natl Acad. Sci. USA 105, 14769–14772 (2008).

    CAS  Google Scholar 

  18. Puthoff, J. B., Jakes, J. E., Cao, H. & Stone, D. S. Investigation of thermally activated deformation in amorphous PMMA and Zr-Cu-Al bulk metallic glasses with broadband nanoindentation creep. J. Mater. Res. 24, 1279–1290 (2009).

    CAS  Google Scholar 

  19. Schuh, C. A., Hufnagel, T. C. & Ramamurty, U. Mechanical behavior of amorphous alloys. Acta Mater. 55, 4067–4109 (2007).

    CAS  Google Scholar 

  20. Wang, Z., Sun, B. A., Bai, H. Y. & Wang, W. H. Evolution of hidden localized flow during glass-to-liquid transition in metallic glass. Nat. Commun. 5, 5823 (2014).

    CAS  Google Scholar 

  21. Pietanza, L. D., Colonna, G., Longo, S. & Capitelli, M. Electron and phonon relaxation in metal films perturbed by a femtosecond laser pulse. Appl. Phys. A 79, 1047–1050 (2004).

    CAS  Google Scholar 

  22. Qiao, J. C. & Pelletier, J. M. Dynamic mechanical analysis in La-based bulk metallic glasses: secondary (β) and main (α) relaxations. J. Appl. Phys. 112, 083528 (2012).

    Google Scholar 

  23. Johnson, W. L., Demetriou, M. D., Harmon, J. S., Lind, M. L. & Samwer, K. Rheology and ultrasonic properties of metallic glass-forming liquids: a potential energy landscape perspective. MRS Bull. 32, 644–650 (2007).

    CAS  Google Scholar 

  24. Angell, C. A. Perspective on the glass transition. J. Phys. Chem. Solids 49, 863–871 (1988).

    CAS  Google Scholar 

  25. Ngai, K. L. Relaxation and Diffusion in Complex Systems (Springer, 2011).

  26. Perez, J. Homogeneous flow and anelastic/plastic deformation of metallic glasses. Acta Metall. 32, 2163–2173 (1984).

    CAS  Google Scholar 

  27. Lu, J., Ravichandran, G. & Johnson, W. L. Deformation behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 bulk metallic glass over a wide range of strain-rates and temperatures. Acta Mater. 51, 3429–3443 (2003).

    CAS  Google Scholar 

  28. Demetriou, M. D. et al. Cooperative shear model for the rheology of glass-forming metallic liquids. Phys. Rev. Lett. 97, 065502 (2006).

    Google Scholar 

  29. Ingebrigtsen, T. S. & Tanaka, H. Structural predictor for nonlinear sheared dynamics in simple glass-forming liquids. Proc. Natl Acad. Sci. USA 115, 87–92 (2018).

    CAS  Google Scholar 

  30. Guan, P., Chen, M. & Egami, T. Stress-temperature scaling for steady-state flow in metallic glasses. Phys. Rev. Lett. 104, 205701 (2010).

    Google Scholar 

  31. Park, K.-W., Lee, C.-M., Kim, H.-J., Lee, J.-H. & Lee, J.-C. A methodology of enhancing the plasticity of amorphous alloys: elastostatic compression at room temperature. Mater. Sci. Eng. A 499, 529–533 (2009).

    Google Scholar 

  32. Song, S. X. & Nieh, T. G. Direct measurements of shear band propagation in metallic glasses – an overview. Intermetallics 19, 1968–1977 (2011).

    CAS  Google Scholar 

  33. Yoo, B.-G. et al. Increased time-dependent room temperature plasticity in metallic glass nanopillars and its size-dependency. Int. J. Plast. 37, 108–118 (2012).

    CAS  Google Scholar 

  34. Brückner, R. & Yue, Y. Non-Newtonian flow behaviour of glass melts as a consequence of viscoelasticity and anisotropic flow. J. Non-Cryst. Solids 175, 118–128 (1994).

    Google Scholar 

  35. Köpplmayr, T. et al. A novel online rheometer for elongational viscosity measurement of polymer melts. Polym. Test. 50, 208–215 (2016).

    Google Scholar 

  36. Malkin, A. Y. Non-Newtonian viscosity in steady-state shear flows. J. Non-Newton. Fluid Mech. 192, 48–65 (2013).

    CAS  Google Scholar 

  37. Roland, C. M. in The Science and Technology of Rubber 4th edn (eds Erman, B., Mark, J. E. & Roland, C. M.) Ch. 6 (Academic Press, 2013).

  38. Mackley, M. R. et al. The observation and evaluation of extensional filament deformation and breakup profiles for non Newtonian fluids using a high strain rate double piston apparatus. J. Non-Newton. Fluid Mech. 239, 13–27 (2017).

    CAS  Google Scholar 

  39. Olsson, P. & Teitel, S. Critical scaling of shear viscosity at the jamming transition. Phys. Rev. Lett. 99, 178001 (2007).

    Google Scholar 

  40. Jeong, S. W., Locat, J., Leroueil, S. & Malet, J.-P. Rheological properties of fine-grained sediment: the roles of texture and mineralogy. Can. Geotech. J. 47, 1085–1100 (2010).

    CAS  Google Scholar 

  41. Tennenbaum, M., Liu, Z., Hu, D. & Fernandez-Nieves, A. Mechanics of fire ant aggregations. Nat. Mater. 15, 54–59 (2016).

    CAS  Google Scholar 

  42. Liu, Y. H. et al. Thermodynamic origins of shear band formation and the universal scaling law of metallic glass strength. Phys. Rev. Lett. 103, 065504 (2009).

    CAS  Google Scholar 

  43. Bird, R. B., Dai, G. C. & Yarusso, B. J. The rheology and flow of viscoplastic materials. Rev. Chem. Eng. 1, 1–70 (1983).

    Google Scholar 

  44. Doi, M. & Edwards, S. F. Dynamics of concentrated polymer systems. Part 4. Rheological properties. J. Chem. Soc. Faraday Trans. 2 75, 38–54 (1979).

    CAS  Google Scholar 

  45. Liu, A. J. & Nagel, S. R. Nonlinear dynamics: jamming is not just cool any more. Nature 396, 21–22 (1998).

    CAS  Google Scholar 

  46. Trappe, V., Prasad, V., Cipelletti, L., Segre, P. N. & Weitz, D. A. Jamming phase diagram for attractive particles. Nature 411, 772–775 (2001).

    CAS  Google Scholar 

  47. Ciamarra, M. P., Pastore, R., Nicodemi, M. & Coniglio, A. Jamming phase diagram for frictional particles. Phys. Rev. E 84, 041308 (2011).

    Google Scholar 

  48. Makse, H. A., Johnson, D. L. & Schwartz, L. M. Packing of compressible granular materials. Phys. Rev. Lett. 84, 4160–4163 (2000).

    CAS  Google Scholar 

  49. Coniglio, A., de Candia, A., Fierro, A., Nicodemi, M. & Tarzia, M. Statistical mechanics approach to the jamming transition in granular materials. Physica A 344, 431–439 (2004).

    Google Scholar 

  50. Jaiswal, A., Egami, T., Kelton, K. F., Schweizer, K. S. & Zhang, Y. Correlation between fragility and the Arrhenius crossover phenomenon in metallic, molecular, and network liquids. Phys. Rev. Lett. 117, 205701 (2016).

    Google Scholar 

  51. Wu, B., Iwashita, T. & Egami, T. Atomic dynamics in simple liquid: de Gennes narrowing revisited. Phys. Rev. Lett. 120, 135502 (2018).

    Google Scholar 

  52. Bi, D., Zhang, J., Chakraborty, B. & Behringer, R. P. Jamming by shear. Nature 480, 355–358 (2011).

    CAS  Google Scholar 

  53. Hedges, L. O., Jack, R. L., Garrahan, J. P. & Chandler, D. Dynamic order-disorder in atomistic models of structural glass formers. Science 323, 1309–1313 (2009).

    CAS  Google Scholar 

  54. Li, M.-X. et al. High-temperature bulk metallic glasses developed by combinatorial methods. Nature 569, 99–103 (2019).

    CAS  Google Scholar 

  55. Lakeland, D. L., Rechenmacher, A. & Ghanem, R. Towards a complete model of soil liquefaction: the importance of fluid flow and grain motion. Proc. R. Soc. A 470, 20130453 (2014).

    Google Scholar 

  56. Liu, Y. H. et al. Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics 21, 105–114 (2012).

    Google Scholar 

  57. Yang, R. Q., Fan, J. T., Li, S. X. & Zhang, Z. F. Fracture behavior of Zr55Cu30Al10Ni5 bulk metallic glass under quasi-static and dynamic compression. J. Mater. Res. 23, 1744–1750 (2008).

    CAS  Google Scholar 

  58. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Google Scholar 

  59. Poisl, W. H., Oliver, W. C. & Fabes, B. D. The relationship between indentation and uniaxial creep in amorphous selenium. J. Mater. Res. 10, 2024–2032 (1995).

    CAS  Google Scholar 

  60. Weihs, T. P., Hong, S., Bravman, J. C. & Nix, W. D. Mechanical deflection of cantilever microbeams: a new technique for testing the mechanical properties of thin films. J. Mater. Res. 3, 931–942 (1988).

    Google Scholar 

Download references

Acknowledgements

S.S. is supported by the National Natural Science Foundation of China (grant no. 51821001) and MOST 973 of China (grant no. 2015CB856800). M.C. is supported by the National Science Foundation (NSF DMR-1804320) with J. Yang as the programme director. F.Z. is sponsored by the Shanghai Pujiang Program under grant no. 21PJ1401800. We also thank the staff from the Shanghai Key Laboratory of Advanced High-Temperature Materials and Precision Forming for assistance during data collection.

Author information

Authors and Affiliations

Authors

Contributions

S.S. designed and performed the broadband stress relaxation experiments and data processing; F.Z. prepared the MG samples and conducted the microstructure characterization; and S.S. and M.C. analysed the data, developed the models and wrote the paper. M.C. conceived and supervised the project.

Corresponding author

Correspondence to Mingwei Chen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jean Marc Pelletier and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–3 and notes.

Source data

Source Data Fig. 1

Source data for Fig. 1b,c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, S., Zhu, F. & Chen, M. Universal scaling law of glass rheology. Nat. Mater. 21, 404–409 (2022). https://doi.org/10.1038/s41563-021-01185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01185-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing