Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The emergence of valency in colloidal crystals through electron equivalents


Colloidal crystal engineering of complex, low-symmetry architectures is challenging when isotropic building blocks are assembled. Here we describe an approach to generating such structures based upon programmable atom equivalents (nanoparticles functionalized with many DNA strands) and mobile electron equivalents (small particles functionalized with a low number of DNA strands complementary to the programmable atom equivalents). Under appropriate conditions, the spatial distribution of the electron equivalents breaks the symmetry of isotropic programmable atom equivalents, akin to the anisotropic distribution of valence electrons or coordination sites around a metal atom, leading to a set of well-defined coordination geometries and access to three new low-symmetry crystalline phases. All three phases represent the first examples of colloidal crystals, with two of them having elemental analogues (body-centred tetragonal and high-pressure gallium), while the third (triple double-gyroid structure) has no known natural equivalent. This approach enables the creation of complex, low-symmetry colloidal crystals that might find use in various technologies.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Assemblies of PAE–EE colloidal crystals and simulation models.
Fig. 2: Formation of nine distinct PAE–EE assemblies controlled by DNA-based interactions.
Fig. 3: MD simulations of the structural configurations and dynamics in equilibrium phases.
Fig. 4: Local structural analysis based on STEM and MD simulations.
Fig. 5: Colloidal gyroid crystal structure.
Fig. 6: Enantiotropic crystal–crystal phase transitions induced by the redistribution of EEs.

Data availability

All other data generated or analysed during this study are included in the Supplementary Information. Further data are available from the corresponding authors upon request. Source data are provided with this paper

Code availability

The source code for HOOMD-blue is available at The source code for the SAXS simulation is available at The lattice segmentation and analysis codes for the electron microscopy images are available at


  1. Lewis, G. N. The atom and the molecule. J. Am. Chem. Soc. 38, 762–785 (1916).

    CAS  Article  Google Scholar 

  2. Pauling, L. The Nature of the Chemical Bond, and the Structure of Molecules and Crystals: An Introduction to Modern Structural Chemistry 2nd edn (Cornell Univ. Press, 1940).

    Google Scholar 

  3. Kalsin, A. M. et al. Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science 312, 420–424 (2006).

    CAS  Article  Google Scholar 

  4. Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55–59 (2006).

    CAS  Article  Google Scholar 

  5. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    CAS  Article  Google Scholar 

  6. Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).

    Article  Google Scholar 

  7. Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).

    CAS  Article  Google Scholar 

  8. Wang, Y. F. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    CAS  Article  Google Scholar 

  9. Huang, M. J. et al. Selective assemblies of giant tetrahedra via precisely controlled positional interactions. Science 348, 424–428 (2015).

    CAS  Article  Google Scholar 

  10. Liu, W. Y. et al. Diamond family of nanoparticle superlattices. Science 351, 582–586 (2016).

    CAS  Article  Google Scholar 

  11. Lin, H. X. et al. Clathrate colloidal crystals. Science 355, 931–935 (2017).

    CAS  Article  Google Scholar 

  12. Yi, C. et al. Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science 369, 1369–1374 (2020).

    CAS  Article  Google Scholar 

  13. He, M. X. et al. Colloidal diamond. Nature 585, 524–529 (2020).

    CAS  Article  Google Scholar 

  14. Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  15. Park, S. J., Lazarides, A. A., Storhoff, J. J., Pesce, L. & Mirkin, C. A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375–12380 (2004).

    CAS  Article  Google Scholar 

  16. Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).

    CAS  Article  Google Scholar 

  17. Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    CAS  Article  Google Scholar 

  18. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).

    Article  CAS  Google Scholar 

  19. Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    CAS  Article  Google Scholar 

  20. Girard, M. et al. Particle analogs of electrons in colloidal crystals. Science 364, 1174–1178 (2019).

    CAS  Article  Google Scholar 

  21. Wang, S. Z. et al. Colloidal crystal "Alloys". J. Am. Chem. Soc. 141, 20443–20450 (2019).

    CAS  Article  Google Scholar 

  22. Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Article  CAS  Google Scholar 

  23. Auyeung, E., Macfarlane, R. J., Choi, C. H. J., Cutler, J. I. & Mirkin, C. A. Transitioning DNA-engineered nanoparticle superlattices from solution to the solid state. Adv. Mater. 24, 5181–5186 (2012).

    CAS  Article  Google Scholar 

  24. Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 4, 201–224 (2019).

    CAS  Article  Google Scholar 

  25. Anderson, J. A., Glaser, J. & Glotzer, S. C. HOOMD-blue: a Python package for high-performance molecular dynamics and hard particle Monte Carlo simulations. Comput. Mater. Sci. 173, 109363 (2020).

    CAS  Article  Google Scholar 

  26. Akcora, P. et al. Anisotropic self-assembly of spherical polymer-grafted nanoparticles. Nat. Mater. 8, 354–359 (2009).

    CAS  Article  Google Scholar 

  27. Pólya, G., Mathematics and Plausible Reasoning (Oxford Univ. Press, 1954).

    Book  Google Scholar 

  28. Iacovella, C. R., Keys, A. S., Horsch, M. A. & Glotzer, S. C. Icosahedral packing of polymer-tethered nanospheres and stabilization of the gyroid phase. Phys. Rev. E 75, 040801 (2007).

    Article  CAS  Google Scholar 

  29. Hyde, S. T., O’Keeffe, M. & Proserpio, D. M. A short history of an elusive yet ubiquitous structure in chemistry, materials, and mathematics. Angew. Chem. Int. Ed. 47, 7996–8000 (2008).

    CAS  Article  Google Scholar 

  30. Longley, W. & McIntosh, T. J. A bicontinuous tetrahedral structure in a liquid-crystalline lipid. Nature 303, 612–614 (1983).

    CAS  Article  Google Scholar 

  31. Prasad, I., Jinnai, H., Ho, R. M., Thomas, E. L. & Grason, G. M. Anatomy of triply-periodic network assemblies: characterizing skeletal and inter-domain surface geometry of block copolymer gyroids. Soft Matter 14, 3612–3623 (2018).

    CAS  Article  Google Scholar 

  32. Saba, M., Turner, M. D., Mecke, K., Gu, M. & Schröder-Turk, G. E. Group theory of circular-polarization effects in chiral photonic crystals with four-fold rotation axes applied to the eight-fold intergrowth of gyroid nets. Phys. Rev. B 88, 245116 (2013).

    Article  CAS  Google Scholar 

  33. Saba, M. et al. Circular dichroism in biological photonic crystals and cubic chiral nets. Phys. Rev. Lett. 106, 103902 (2011).

    CAS  Article  Google Scholar 

  34. Kirkensgaard, J. J., Evans, M. E., de Campo, L. & Hyde, S. T. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks. Proc. Natl Acad. Sci. USA 111, 1271–1276 (2014).

    CAS  Article  Google Scholar 

  35. Casey, M. et al. Driving diffusionless transformations in colloidal crystals using DNA handshaking. Nat. Commun. 3, 1209 (2012).

    Article  CAS  Google Scholar 

  36. Zhang, Y. et al. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions. Nat. Mater. 14, 840–847 (2015).

    CAS  Article  Google Scholar 

  37. Mao, R., Pretti, E. & Mittal, J. Temperature-controlled reconfigurable nanoparticle binary superlattices. ACS Nano 15, 8466–8473 (2021).

    CAS  Article  Google Scholar 

  38. Du, C. X., van Anders, G., Newman, R. S. & Glotzer, S. C. Shape-driven solid–solid transitions in colloids. Proc. Natl Acad. Sci. USA 114, E3892–E3899 (2017).

    CAS  Google Scholar 

  39. Sandoval, L., Urbassek, H. M. & Entel, P. The Bain versus Nishiyama–Wassermann path in the martensitic transformation of Fe. New J. Phys. 11, 103027 (2009).

    Article  CAS  Google Scholar 

  40. Lee, S., Leighton, C. & Bates, F. S. Sphericity and symmetry breaking in the formation of Frank–Kasper phases from one component materials. Proc. Natl Acad. Sci. USA 111, 17723–17731 (2014).

    CAS  Article  Google Scholar 

  41. Li, B., Zhou, D. & Han, Y. L. Assembly and phase transitions of colloidal crystals. Nat. Rev. Mater. 1, 15011 (2016).

    CAS  Article  Google Scholar 

  42. Hanfland, M., Syassen, K., Christensen, N. E. & Novikov, D. L. New high-pressure phases of lithium. Nature 408, 174–178 (2000).

    CAS  Article  Google Scholar 

  43. Hobbs, D., Hafner, J. & Spisak, D. Understanding the complex metallic element Mn. I. Crystalline and noncollinear magnetic structure of α-Mn. Phys. Rev. B 68, 014407 (2003).

    Article  CAS  Google Scholar 

  44. McMahon, M. I. & Nelmes, R. J. High-pressure structures and phase transformations in elemental metals. Chem. Soc. Rev. 35, 943–963 (2006).

    CAS  Article  Google Scholar 

  45. Seddon, J. M. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase-transitions of lipids. Biochim Biophys. Acta 1031, 1–69 (1990).

    CAS  Article  Google Scholar 

  46. Iacovella, C. R., Keys, A. S. & Glotzer, S. C. Self-assembly of soft-matter quasicrystals and their approximants. Proc. Natl Acad. Sci. USA 108, 20935–20940 (2011).

    CAS  Article  Google Scholar 

  47. Sun, H. J., Zhang, S. D. & Percec, V. From structure to function via complex supramolecular dendrimer systems. Chem. Soc. Rev. 44, 3900–3923 (2015).

    CAS  Article  Google Scholar 

  48. Lee, S., Bluemle, M. J. & Bates, F. S. Discovery of a Frank-Kasper σ phase in sphere-forming block copolymer melts. Science 330, 349–353 (2010).

    CAS  Article  Google Scholar 

  49. Ziherl, P. & Kamien, R. D. Maximizing entropy by minimizing area: towards a new principle of self-organization. J. Phys. Chem. B 105, 10147–10158 (2001).

    CAS  Article  Google Scholar 

  50. Li, T., Senesi, A. J. & Lee, B. Small angle X-ray scattering for nanoparticle research. Chem. Rev. 116, 11128–11180 (2016).

    CAS  Article  Google Scholar 

  51. Park, J. et al. Direct observation of wet biological samples by graphene liquid cell transmission electron microscopy. Nano Lett. 15, 4737–4744 (2015).

    CAS  Article  Google Scholar 

  52. Dabov, K., Foi, A., Katkovnik, V. & Egiazarian, K. Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007).

    Article  Google Scholar 

  53. Nguyen, T. D., Phillips, C. L., Anderson, J. A. & Glotzer, S. C. Rigid body constraints realized in massively-parallel molecular dynamics on graphics processing units. Comput. Phys. Commun. 182, 2307–2313 (2011).

    CAS  Article  Google Scholar 

  54. Glaser, J., Zha, X., Anderson, J. A., Glotzer, S. C. & Travesset, A. Pressure in rigid body molecular dynamics. Comput. Mater. Sci. 173, 109430 (2020).

    CAS  Article  Google Scholar 

  55. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  CAS  Google Scholar 

  56. Chandler, D., Weeks, J. D. & Andersen, H. C. Van der Waals picture of liquids, solids, and phase transformations. Science 220, 787–794 (1983).

    CAS  Article  Google Scholar 

  57. Knorowski, C., Burleigh, S. & Travesset, A. Dynamics and statics of DNA-programmable nanoparticle self-assembly and crystallization. Phys. Rev. Lett. 106, 215511 (2011).

    Article  CAS  Google Scholar 

  58. Angioletti-Uberti, S., Mognetti, M. B. & Frenkel, D. Theory and simulation of DNA-coated colloids: a guide for rational design. Phys. Chem. Chem. Phys. 18, 6373–6393 (2016).

    CAS  Article  Google Scholar 

  59. Rogers, W. B. & Crocker, J. C. Direct measurements of DNA-mediated colloidal interactions and their quantitative modeling. Proc. Natl Acad. Sci. USA 108, 15687–15692 (2011).

    CAS  Article  Google Scholar 

  60. Li, T. I. N. G., Sknepnek, R., Macfarlane, R. J., Mirkin, C. A. & de la Cruz, M. O. Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. Nano Lett. 12, 2509–2514 (2012).

    CAS  Article  Google Scholar 

  61. Ramasubramani, V. et al. freud: a software suite for high throughput analysis of particle simulation data. Comput. Phys. Commun. 254, 107275 (2020).

    CAS  Article  Google Scholar 

  62. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784–805 (1983).

    CAS  Article  Google Scholar 

Download references


We thank E. W. Roth (Northwestern University (NU)) for ultramicrotomy, S. Weigand (NU) for SAXS assistance and A. Das (NU) for helpful discussions. This work was supported primarily by the Center for Bio-Inspired Energy Science, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences (award DE-SC0000989, for synthesis and molecular dynamics simulations, C.A.M. and S.C.G.) and also by the Air Force Office of Scientific Research (award FA9550-17-1-0348, for synthesis, spectroscopy and electron microscopy, C.A.M. and V.P.D.) and the Sherman Fairchild Foundation (for electron microscopy, C.A.M.). This work made use of the EPIC facility of Northwestern University’s NUANCE Center, which has received support from the SHyNE Resource (NSF ECCS-2025633), the IIN and Northwestern’s MRSEC programme (NSF DMR-1720139). This research also used the resources (Sector 5, the DuPont-Northwestern-Dow Collaborative Access Team ‘DND-CAT’, beamline 12-ID-B) of the Advanced Photon Source, which is a US Department of Energy Office of Science User Facility operated by Argonne National Laboratory (contract DE-AC02-06CH11357). Simulations were carried out using the resources at the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility (supported under contract DE-AC05-00OR22725). Computational resources and services were also provided by Advanced Research Computing at the University of Michigan.

Author information




C.A.M. and S.C.G. directed the research. S.W. performed the synthesis and X-ray scattering experiments. S.L. performed the MD simulations. J.S.D. and S.W. performed the electron microscopy studies. S.W. and B.L. performed the SAXS simulations. All authors contributed to the data analysis and manuscript preparation.

Corresponding authors

Correspondence to Byeongdu Lee, Sharon C. Glotzer or Chad A. Mirkin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Materials thanks Hao Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Experimental Details, Computational Details, captions for Supplementary Videos 1–6, Tables 1–6 and Figs. 1–49.

Reporting Summary

Supplementary Video 1

Movement of a single EE (grey sphere) in the BCC metallic phase (transparent red spheres) with a periodic box condition (ϕPAE = 0.34) for 2 × 106 MD timesteps. All other simulation parameters are given in Supplementary Table 5.

Supplementary Video 2

Movement of a single EE (grey sphere) in the A15 tetrahedral phase (transparent purple spheres) with a periodic box condition (ϕPAE = 0.33) for 2 × 106 MD timesteps. All other simulation parameters are given in Supplementary Table 5.

Supplementary Video 3

Movement of a single EE (grey sphere) in the SC covalent phase (transparent orange spheres) with a periodic box condition (ϕPAE = 0.56) for 2 × 106 MD timesteps. All other simulation parameters are given in Supplementary Table 5.

Supplementary Video 4

Dynamics of EEs (light-grey and grey spheres) in the A15 tetrahedral phase (transparent purple spheres) with a periodic box condition (ϕPAE = 0.33) for 107 MD timesteps. All other simulation parameters are given in Supplementary Table 5. In the initial configuration, the EEs were coloured in both light-grey and grey based on their y-axis position. At the end of the simulation, the light-grey and grey EEs are well mixed, indicating the diffusive character of the EEs in the A15 phase.

Supplementary Video 5

Dynamics of EEs (light-grey and grey spheres) in the SC covalent phase (transparent orange spheres) with a periodic box condition (ϕPAE = 0.56) for 107 MD timesteps. All other simulation parameters are given in Supplementary Table 5. At the initial configuration, the EEs were coloured in both light-grey and grey based on their y-axis position. At the end of the simulation, the light-grey and grey EEs are not mixed, indicating the non-diffusive character of the EEs in the SC phase.

Supplementary Video 6

Phase transition from the initial BCC (red spheres) to the final FCC (blue spheres) in a periodic box condition (ϕPAE = 0.05 and ϕEE = 0.41) at a constant temperature \(T^ \ast /T_m^ \ast\) ≈ 0.67 for 5 × 107 MD timesteps. The solid cluster is fully surrounded by the gas-phase EEs (grey spheres). The crystal structures of the PAEs were identified by the bond order parameter (Q4; see Methods).

Source data

Source Data Fig. 2

Experimental and simulated SAXS results, correlation with the structural parameters from the experiments.

Source Data Fig. 3

Structural and kinetic parameters from the molecular dynamics and experiments.

Source Data Fig. 6

Temperature-dependent SAXS results.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Lee, S., Du, J.S. et al. The emergence of valency in colloidal crystals through electron equivalents. Nat. Mater. 21, 580–587 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing