Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ferrimagnetic spintronics

Abstract

Ferrimagnets composed of multiple and antiferromagnetically coupled magnetic elements have attracted much attention recently as a material platform for spintronics. They offer the combined advantages of both ferromagnets and antiferromagnets, namely the easy control and detection of their net magnetization by an external field, antiferromagnetic-like dynamics faster than ferromagnetic dynamics and the potential for high-density devices. This Review summarizes recent progress in ferrimagnetic spintronics, with particular attention to the most-promising functionalities of ferrimagnets, which include their spin transport, spin texture dynamics and all-optical switching.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Different classes of long-range magnetic order.
Fig. 2: All-optical magnetization switching of GdFeCo with linearly polarized light.
Fig. 3: DW and skyrmion motion in ferrimagnets.
Fig. 4: Fast motion of ferrimagnetic DW at TA.
Fig. 5: Skyrmion Hall angle in ferrimagnets.
Fig. 6: Spin coherence length in a ferrimagnetic multilayer.

References

  1. Néel, L. Antiferromagnetism and ferrimagnetism. Proc. Phys. Soc. A 65, 869 (1952).

    Google Scholar 

  2. Dionne, G. F. A review of ferrites for microwave applications. Proc. IEEE 63, 777–789 (1975).

    CAS  Google Scholar 

  3. Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).

    Google Scholar 

  4. Chaudhari, P., Cuomo, J. J. & Gambino, R. J. Amorphous metallic films for magneto-optic applications. Appl. Phys. Lett. 42, 202 (1973).

    Google Scholar 

  5. Carey, R., Newman, D. M. & Thomas, B. W. J. Magneto-optic recording. J. Phys. D 28, 2207–2227 (1995).

    CAS  Google Scholar 

  6. Hansen, P. et al. Magnetic and magneto‐optical properties of rare‐earth transition‐metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 66, 756 (1989).

    CAS  Google Scholar 

  7. Tsunashima, S. Magneto-optical recording. J. Phys. D 34, R87–R102 (2001).

    CAS  Google Scholar 

  8. Focus on antiferromagnetic spintronics. Nat. Phys. https://www.nature.com/collections/wplplmmvnt (2018).

  9. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    CAS  Google Scholar 

  10. Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    CAS  Google Scholar 

  11. Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).

    CAS  Google Scholar 

  12. Mentink, J. H. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).

    CAS  Google Scholar 

  13. Davies, C. S. et al. Pathways for single-shot all-optical switching of magnetization in ferrimagnets. Phys. Rev. Appl. 13, 024064 (2020).

    CAS  Google Scholar 

  14. Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).

    CAS  Google Scholar 

  15. Evans, R. F. L., Ostler, T. A., Chantrell, R. W., Radu, I. & Rasing, T. Ultrafast thermally induced magnetic switching in synthetic ferrimagnets. Appl. Phys. Lett. 104, 082410 (2014).

    Google Scholar 

  16. Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).

    CAS  Google Scholar 

  17. Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).

    CAS  Google Scholar 

  18. Hennecke, M. et al. Angular momentum flow during ultrafast demagnetization of a ferrimagnet. Phys. Rev. Lett. 122, 157202 (2019).

    CAS  Google Scholar 

  19. Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).

    CAS  Google Scholar 

  20. Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).

    CAS  Google Scholar 

  21. Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121, 057701 (2018).

    CAS  Google Scholar 

  22. Bläsing, R. et al. Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nat. Commun. 9, 4984 (2018).

    Google Scholar 

  23. Avci, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).

    CAS  Google Scholar 

  24. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    CAS  Google Scholar 

  25. Ghosh, S. et al. Current-driven domain wall dynamics in ferrimagnetic nickel-doped Mn4N films: very large domain wall velocities and reversal of motion direction across the magnetic compensation point. Nano Lett. 21, 2580–2587 (2021).

    CAS  Google Scholar 

  26. Kim, S. K., Lee, K.-J. & Tserkovnyak, Y. Self-focusing skyrmion racetracks in ferrimagnets. Phys. Rev. B 95, 140404(R) (2017).

    Google Scholar 

  27. Hirata, Y. et al. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).

    CAS  Google Scholar 

  28. Oh, S.-H. et al. Coherent terahertz spin-wave emission associated with ferrimagnetic domain walls. Phys. Rev. B 96, 100407(R) (2017).

    Google Scholar 

  29. Oh, S.-H. & Lee, K.-J. Ferrimagnetic domain wall motion induced by damping-like spin–orbit torque. J. Magn. 23, 196–200 (2018).

    Google Scholar 

  30. Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    CAS  Google Scholar 

  31. Lim, Y. et al. Dephasing of transverse spin current in ferrimagnetic alloys. Phys. Rev. B 103, 024443 (2021).

    CAS  Google Scholar 

  32. Okuno, T. et al. Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets. Nat. Electron. 2, 389–393 (2019).

    CAS  Google Scholar 

  33. Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005).

    CAS  Google Scholar 

  34. Singh, N., Elliott, P., Dewhurst, J. K., Gross, E. K. U. & Sharma, S. Ab‐initio real‐time magnon dynamics in ferromagnetic and ferrimagnetic systems. Phys. Status Solidi B 257, 1900654 (2020).

    CAS  Google Scholar 

  35. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).

    CAS  Google Scholar 

  36. Wietstruck, M. et al. Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by femtosecond X-ray magnetic circular dichroism. Phys. Rev. Lett. 106, 127401 (2011).

    Google Scholar 

  37. Radu, I. et al. Ultrafast and distinct spin dynamics in magnetic alloys. Spin 5, 1550004 (2015).

    CAS  Google Scholar 

  38. Mentink, J. Magnetism on the Timescale of the Exchange Interaction: Explanations and Predictions. PhD thesis, Radboud Univ. (2012).

  39. Campbell, I. A. Indirect exchange for rare earths in metals. J. Phys. F 2, L47 (1972).

    CAS  Google Scholar 

  40. Buschow, K. H. J. Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40, 1179 (1977).

    CAS  Google Scholar 

  41. Lang, J. K., Baer, Y. & Cox, P. A. Study of the 4f levels in rare-earth metals by high-energy spectroscopies. Phys. Rev. Lett. 42, 74 (1979).

    CAS  Google Scholar 

  42. Bar’yakhtar, V. G. Phenomenological description of relaxation processes in magnetic materials. Sov. Phys. JETP 60, 863–867 (1984).

    Google Scholar 

  43. Bar’yakhtar, V. G. Crystal symmetry and the structure of the relaxation terms in the antiferromagnet dynamic equations of motion. Sov. Phys. JETP 67, 757 (1988).

    Google Scholar 

  44. Bar’yakhtar, V. G., Butrim, V. I. & Ivanov, B. A. Exchange relaxation as a mechanism of the ultrafast reorientation of spins in a two-sublattice ferrimagnet. JETP Lett. 98, 289–293 (2013).

    Google Scholar 

  45. Wienholdt, S., Hinzke, D., Carva, K., Oppeneer, P. M. & Nowak, U. Orbital-resolved spin model for thermal magnetization switching in rare-earth-based ferrimagnets. Phys. Rev. B 88, 020406(R) (2013).

    Google Scholar 

  46. Schellekens, A. J. & Koopmans, B. Microscopic model for ultrafast magnetization dynamics of multisublattice magnets. Phys. Rev. B 87, 020407(R) (2013).

    Google Scholar 

  47. Barker, J. & Atxitia, U. A review of modelling in ferrimagnetic spintronics. J. Phys. Soc. Jpn 90, 081001 (2021).

    Google Scholar 

  48. Lalieu, M. L. M., Peeters, M. J. G., Haenen, S. R. R., Lavrijsen, R. & Koopmans, B. Deterministic all-optical switching of synthetic ferrimagnets using single femtosecond laser pulses. Phys. Rev. B 96, 220411(R) (2017).

    Google Scholar 

  49. Avilés-Félix, L. et al. Single-shot all-optical switching of magnetization in Tb/Co multilayer-based electrodes. Sci. Rep. 10, 5211 (2020).

    Google Scholar 

  50. Khorsand, A. R. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).

    CAS  Google Scholar 

  51. Atxitia, U., Barker, J., Chantrell, R. W. & Chubykalo-Fesenko, O. Controlling the polarity of the transient ferromagneticlike state in ferrimagnets. Phys. Rev. B 89, 224421 (2014).

    Google Scholar 

  52. Steil, D., Alebrand, S., Hassdenteufel, A., Cinchetti, M. & Aeschlimann, M. All-optical magnetization recording by tailoring optical excitation parameters. Phys. Rev. B 84, 224408 (2011).

    Google Scholar 

  53. Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).

    Google Scholar 

  54. Finazzi, M. et al. Laser-induced magnetic nanostructures with tunable topological properties. Phys. Rev. Lett. 110, 177205 (2013).

    CAS  Google Scholar 

  55. Banerjee, C. et al. Single pulse all-optical toggle switching of magnetization without gadolinium in the ferrimagnet Mn2RuxGa. Nat. Commun. 11, 4444 (2020).

    CAS  Google Scholar 

  56. Davies, C. S. et al. Exchange-driven all-optical magnetic switching in compensated 3d ferrimagnets. Phys. Rev. Res. 2, 032044(R) (2020).

    Google Scholar 

  57. Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).

    CAS  Google Scholar 

  58. Wang, S. et al. Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo. Light Sci. Appl. 10, 8 (2021).

    Google Scholar 

  59. El-Ghazaly, A. et al. Ultrafast magnetization switching in nanoscale magnetic dots. Appl. Phys. Lett. 114, 232407 (2019).

    Google Scholar 

  60. Ivanov, B. A. & Sukstanskii, A. L. Nonlinear magnetization waves in ferrites. Sov. Phys. JETP 57, 214 (1983).

    Google Scholar 

  61. Chiolero, A. & Loss, D. Macroscopic quantum coherence in ferrimagnets. Phys. Rev. B 56, 738 (1997).

    CAS  Google Scholar 

  62. Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).

    CAS  Google Scholar 

  63. Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).

    Google Scholar 

  64. Okuno, T. et al. Temperature dependence of magnetic resonance in ferrimagnetic GdFeCo alloys. Appl. Phys. Express 12, 093001 (2019).

    CAS  Google Scholar 

  65. Kim, C. et al. Spin wave excitation with distinct handedness across compensation temperatures of ferrimagnets. Nat. Mater. 19, 980–985 (2020).

    CAS  Google Scholar 

  66. Schryer, N. & Walker, L. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).

    CAS  Google Scholar 

  67. Beach, G., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat. Mater. 4, 741–744 (2005).

    CAS  Google Scholar 

  68. Mougin, A., Cormier, M., Adam, J. P., Metaxas, P. J. & Ferré, J. Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys. Lett. 78, 57007 (2007).

    Google Scholar 

  69. Bar’yakhtar, V. G., Ivanov, B. A. & Chetkin, M. V. Dynamics of domain walls in weak ferromagnets. Sov. Phys. Usp. 28, 563–588 (1985).

    Google Scholar 

  70. Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).

    Google Scholar 

  71. Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).

    Google Scholar 

  72. Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).

    Google Scholar 

  73. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).

    Google Scholar 

  74. Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).

    CAS  Google Scholar 

  75. Dzialoshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).

    Google Scholar 

  76. Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

    CAS  Google Scholar 

  77. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    CAS  Google Scholar 

  78. Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).

    CAS  Google Scholar 

  79. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).

    CAS  Google Scholar 

  80. Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).

    CAS  Google Scholar 

  81. Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).

    CAS  Google Scholar 

  82. Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017).

    Google Scholar 

  83. Pollard, S. D. et al. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Nat. Commun. 8, 14761 (2017).

    Google Scholar 

  84. Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci. Rep. 8, 4464 (2018).

    Google Scholar 

  85. Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).

    CAS  Google Scholar 

  86. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2016).

    Google Scholar 

  87. Barker, J. & Tretiakov, O. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).

    Google Scholar 

  88. Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).

    CAS  Google Scholar 

  89. Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).

    Google Scholar 

  90. Kaiser, C., Panchula, A. F. & Parkin, S. S. P. Finite tunneling spin polarization at the compensation point of rare-earth-metal–transition-metal alloys. Phys. Rev. Lett. 95, 047202 (2005).

    Google Scholar 

  91. Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).

    Google Scholar 

  92. Haney, P. M. & MacDonald, A. H. Current-induced torques due to compensated antiferromagnets. Phys. Rev. Lett. 100, 196801 (2008).

    Google Scholar 

  93. Xu, Y., Wang, S. & Xia, K. Spin-transfer torques in antiferromagnetic metals from first principles. Phys. Rev. Lett. 100, 226602 (2008).

    Google Scholar 

  94. Mishra, R. et al. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys. Rev. Lett. 118, 167201 (2017).

    Google Scholar 

  95. Finley, J. & Liu, L. Spin–orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Phys. Rev. Appl. 6, 054001 (2016).

    Google Scholar 

  96. Roschewsky, N., Lambert, C.-H. & Salahuddin, S. Spin–orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Phys. Rev. B 96, 064406 (2017).

    Google Scholar 

  97. Ueda, K., Mann, M., de Brouwer, P. W. P., Bono, D. & Beach, G. S. D. Temperature dependence of spin–orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film. Phys. Rev. B 96, 064410 (2017).

    Google Scholar 

  98. Pham, T. H. et al. Thermal contribution to the spin–orbit torque in metallic-ferrimagnetic systems. Phys. Rev. Appl. 9, 064032 (2018).

    CAS  Google Scholar 

  99. Hebler, B., Hassdenteufel, A., Reinhardt, P., Karl, H. & Albrecht, M. Ferrimagnetic Tb–Fe alloy thin films: composition and thickness dependence of magnetic properties and all-optical switching. Front. Mater. 3, 8 (2016).

    Google Scholar 

  100. Je, S.-G. et al. Spin–orbit torque-induced switching in ferrimagnetic alloys: experiments and modeling. Appl. Phys. Lett. 112, 062401 (2018).

    Google Scholar 

  101. Tatara, G., Kohno, H. & Shibata, J. Microscopic approach to current-driven domain wall dynamics. Phys. Rep. 468, 213–301 (2008).

    Google Scholar 

  102. Lee, K.-J. et al. Self-consistent calculation of spin transport and magnetization dynamics. Phys. Rep. 531, 89–113 (2013).

    Google Scholar 

  103. Xiao, J., Zangwill, A. & Stiles, M. D. Spin-transfer torque for continuously variable magnetization. Phys. Rev. B 73, 054428 (2006).

    Google Scholar 

  104. Park, H.-J. et al. Numerical computation of spin-transfer torques for antiferromagnetic domain walls. Phys. Rev. B 101, 144431 (2020).

    CAS  Google Scholar 

  105. Kim, J. H. et al. Spin–orbit torques associated with ferrimagnetic order in Pt/GdFeCo/MgO layers. Sci. Rep. 8, 6017 (2018).

    Google Scholar 

  106. Haltz, E. et al. Deviations from bulk behavior in TbFe(Co) thin films: interfaces contribution in the biased composition. Phys. Rev. Mater. 2, 104410 (2018).

    CAS  Google Scholar 

  107. Kim, D.-H. et al. Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. 18, 685–690 (2019).

    CAS  Google Scholar 

  108. Krishnia, S. et al. Making spin-orbit coupling visible in single layer ferrimagnets: direct observation of spin–orbit torques and chiral spin textures. Phys. Rev. Appl. 16, 024040 (2021).

    CAS  Google Scholar 

  109. Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).

    CAS  Google Scholar 

  110. Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin–orbit torques. Phys. Rev. Lett. 117, 017202 (2016).

    CAS  Google Scholar 

  111. Shiino, T. et al. Antiferromagnetic domain wall motion by spin–orbit torques. Phys. Rev. Lett. 117, 087203 (2016).

    Google Scholar 

  112. Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).

    Google Scholar 

  113. Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405(R) (2019).

    Google Scholar 

  114. Kim, K.-W. & Lee, K.-J. Generalized spin drift-diffusion formalism in the presence of spin–orbit interaction of ferromagnets. Phys. Rev. Lett. 125, 207205 (2020).

    CAS  Google Scholar 

  115. Baek, S.-H. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).

    CAS  Google Scholar 

  116. Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Hall effect. Nat. Electron. 1, 120–123 (2018).

    Google Scholar 

  117. Wang, W. et al. Anomalous spin–orbit torques in magnetic single-layer films. Nat. Nanotechnol. 14, 819–824 (2019).

    CAS  Google Scholar 

  118. Céspedes‐Berrocal, D. et al. Current‐induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).

    Google Scholar 

  119. Kryglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).

    Google Scholar 

  120. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Google Scholar 

  121. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    CAS  Google Scholar 

  122. Liensberger, L. et al. Exchange-enhanced ultrastrong magnon–magnon coupling in a compensated ferrimagnet. Phys. Rev. Lett. 123, 117204 (2019).

    CAS  Google Scholar 

  123. Nambu, Y. et al. Observation of magnon polarization. Phys. Rev. Lett. 125, 027201 (2020).

    CAS  Google Scholar 

  124. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    CAS  Google Scholar 

  125. Uchida, K. et al. Observation of the spin-Seebeck effect. Nature 455, 778–781 (2008).

    CAS  Google Scholar 

  126. Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Google Scholar 

  127. Geprägs, S. et al. Origin of the spin Seebeck effect in compensated ferrimagnets. Nat. Commun. 7, 10452 (2016).

    Google Scholar 

  128. Bauer, J. J. et al. Dysprosium iron garnet thin films with perpendicular magnetic anisotropy on silicon. Adv. Electron. Mater. 6, 1900820 (2020).

    CAS  Google Scholar 

  129. Hu, C.-M. Dawn of cavity spintronics. Phys. Can. 72, 76 (2016).

    Google Scholar 

  130. Shim, J.-C., Kim, S.-J., Kim, S. K. & Lee, K.-J. Enhanced magnon–photon coupling at the angular momentum compensation point of ferrimagnets. Phys. Rev. Lett. 125, 027205 (2020).

    CAS  Google Scholar 

  131. Huang, M. et al. Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures. Nat. Nanotechnol. 16, 981–988 (2021).

    CAS  Google Scholar 

  132. Swaving, A. C. & Duine, R. A. Current-induced torques in continuous antiferromagnetic textures. Phys. Rev. B 83, 054428 (2011).

    Google Scholar 

Download references

Acknowledgements

K.-J.L. acknowledges support from the Samsung Research Funding Center of Samsung Electronics under project no. SRFCMA1702-02. T.R. acknowledges support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the programme Exciting Exchange, the European Union Horizon 2020 and the innovation programme under the FET-Open grand agreement no. 713481 (SPICE), and the European Research Council ERC grant agreement no. 856538 (3D MAGiC). H.Y. is supported by SpOT-LITE programme (A*STAR grant, A18A6b0057) through RIE2020 funds, Samsung Electronics’ University R&D programme (Exotic SOT materials/SOT characterization) and a National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015). G.S.D.B. acknowledges support through the DARPA ‘Topological Excitations in Electronics (TEE)’ programme. S.K.K. is supported by Brain Pool Plus Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2020H1D3A2A03099291) and the National Research Foundation of Korea funded by the Korea Government via the SRC Center for Quantum Coherence in Condensed Matter (NRF-2016R1A5A1008184).

Author information

Authors and Affiliations

Authors

Contributions

The manuscript was written through contributions from all authors.

Corresponding author

Correspondence to Kyung-Jin Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Uwe Bovensiepen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S.K., Beach, G.S.D., Lee, KJ. et al. Ferrimagnetic spintronics. Nat. Mater. 21, 24–34 (2022). https://doi.org/10.1038/s41563-021-01139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01139-4

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing