Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sensory feedback for limb prostheses in amputees

Abstract

Commercial prosthetic devices currently do not provide natural sensory information on the interaction with objects or movements. The subsequent disadvantages include unphysiological walking with a prosthetic leg and difficulty in controlling the force exerted with a prosthetic hand, thus creating health issues. Restoring natural sensory feedback from the prosthesis to amputees is an unmet clinical need. An optimal device should be able to elicit natural sensations of touch or proprioception, by delivering the complex signals to the nervous system that would be produced by skin, muscles and joints receptors. This Review covers the various neurotechnological approaches that have been proposed for the development of the optimal sensory feedback restoration device for arm and leg amputees.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Sensory feedback restoration devices tested in humans.
Fig. 2: Artificial sensory feedback is inspired by nature.

a, Bottom left (grey hand) and far right (brain), reproduced with permission from pixy.org; bottom right (remapping approach), adapted with permission from iStock by Getty Images/Francesco Maria Petrini; bottom, second from left (sensorized glove), reproduced with permission from ref. 75, under a Creative Commons license CC BY 4.0; top, second from left (sensorized insole), adapted with permission from ref. 84, AAAS. b, Left, reproduced with permission from ref. 109, Elsevier. d, Hands, adapted with permission from ref. 112, Elsevier Biomedical Press; feet, adapted with permission from ref. 18, American Physiological Society

Fig. 3: Electrodes used in human experiments.

panels reproduced with permission from: a,j, ref. 113, under a Creative Commons license CC BY 4.0; b,f, ref. 39, IOP; c, ref. 114, IEEE; d, ref. 40, Elsevier; e, ref. 49, Wiley; g,h, ref. 54, IEEE; i, ref. 63, Springer Nature Ltd; l,m, ref. 116, River Publishers; n, ref. 56, IEEE. Panel k adapted with permission from ref. 115, IOP

Fig. 4: Sensation characterization for upper-limb amputees according to different neural approaches.

TSR sensation location, reproduced with permission from ref. 80, under a Creative Commons license CC BY 4.0; cuff sensation location and plot, adapted with permission from ref. 69, AAAS; FINE sensation location and plot, adapted with permission from ref. 53, AAAS; tf-LIFE sensation location and picture, adapted with permission from ref. 41, IOP; TIME sensation location and plot, reproduced with permission from ref. 10, Wiley; USEA sensation location, reproduced with permission from ref. 71, IOP; USEA plot, adapted with permission from ref. 66, AAAS; TSR, FINE and USEA pictures, adapted with permission from ref. 99, under a Creative Commons license CC BY-NC-ND 4.0

Fig. 5: Sensation characterization for lower-limb amputees according to different neural approaches.

TIME sensation location, reproduced with permission from ref. 84, AAAS; FINE picture, adapted with permission from ref. 99, under a Creative Commons license CC BY-NC-ND 4.0; AMI sensation location and plot, adapted with permission from ref. 86, AAAS; FINE sensation location, adapted with permission from ref. 82, under a Creative Commons license CC BY 3.0

Fig. 6: Biomimetic model-based encoding for natural sensory feedback.

dynamic skin indentation in sensing panel and all of biomimetic sensory encoding panel, reproduced with permission from ref. 65, Elsevier; all of electro-neural modelling panel, adapted with permission from ref. 104, under a Creative Commons license CC BY 4.0

Data availability

The data and calculations that support the findings of this Review are available from the corresponding authors upon reasonable request.

References

  1. Unwin, N. Epidemiology of lower extremity amputation in centres in Europe, North America and East Asia. Br. J. Surg. 87, 328–337 (2000).

    CAS  Google Scholar 

  2. Moxey, P. W. et al. Lower extremity amputations—a review of global variability in incidence. Diabet. Med. 28, 1144–1153 (2011).

    CAS  Google Scholar 

  3. Winkler, S. L. H. in Care of the Combat Amputee (eds Pasquina, P. F. et al.) 597–605 (Department of the Army, 2009).

  4. Sanità solo il 5 di amputazioni è legata a infortuni sul lavoro. INAIL https://www.inail.it/cs/internet/comunicazione/news-ed-eventi/news/p1780018061_sanita_solo_il_5_di_amputazi.html (2010).

  5. Atroshi, I. & Rosberg, H. E. Epidemiology of amputations and severe injuries of the hand. Hand Clin. 17, 343–350 (2001).

    CAS  Google Scholar 

  6. Miller, W. C., Speechley, M. & Deathe, B. The prevalence and risk factors of falling and fear of falling among lower extremity amputees. Arch. Phys. Med. Rehabil. 82, 1031–1037 (2001).

    CAS  Google Scholar 

  7. Nolan, L. et al. Adjustments in gait symmetry with walking speed in trans-femoral and trans-tibial amputees. Gait Posture 17, 142–151 (2003).

    Google Scholar 

  8. Waters, R. L., Perry, J., Antonelli, D. & Hislop, H. Energy cost of walking of amputees: the influence of level of amputation. J. Bone Joint Surg. Am. 58, 42–46 (1976).

    CAS  Google Scholar 

  9. Biddiss, E., Beaton, D. & Chau, T. Consumer design priorities for upper limb prosthetics. Disabil. Rehabil. Assist. Technol. 2, 346–357 (2007).

    Google Scholar 

  10. Petrini, F. M. et al. Six-month assessment of a hand prosthesis with intraneural tactile feedback. Ann. Neurol. 85, 137–154 (2019).

    Google Scholar 

  11. Williamson, G. M., Schulz, R., Bridges, M. W. & Behan, A. M. Social and psychological factors in adjustment to limb amputation. J. Soc. Behav. Pers. 9, 249–268 (1994).

    Google Scholar 

  12. Blanke, O. Multisensory brain mechanisms of bodily self-consciousness. Nat. Rev. Neurosci. 13, 556–571 (2012).

    CAS  Google Scholar 

  13. Heller, B. W., Datta, D. & Howitt, J. A pilot study comparing the cognitive demand of walking for transfemoral amputees using the intelligent prosthesis with that using conventionally damped knees. Clin. Rehabil. 14, 518–522 (2000).

    CAS  Google Scholar 

  14. Makin, T. R., de Vignemont, F. & Faisal, A. A. Neurocognitive barriers to the embodiment of technology. Nat. Biomed. Eng. 1, 0014 (2017).

    Google Scholar 

  15. Flor, H., Nikolajsen, L. & Staehelin Jensen, T. Phantom limb pain: a case of maladaptive CNS plasticity? Nat. Rev. Neurosci. 7, 873–881 (2006).

    CAS  Google Scholar 

  16. Roffman, C. E., Buchanan, J. & Allison, G. T. Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules. J. Physiother. 60, 224–231 (2014).

    Google Scholar 

  17. Torebjörk, H. E., Vallbo, A. A. B. & Ochoa, J. L. Intraneural microstimulation in man: its relation to specificity of tactile sensations. Brain 110, 1509–1529 (1987).

    Google Scholar 

  18. Strzalkowski, N. D., Peters, R. M., Inglis, J. T. & Bent, L. R. Cutaneous afferent innervation of the human foot sole: what can we learn from single-unit recordings? J. Neurophysiol. 120, 1233–1246 (2018).

    Google Scholar 

  19. Muniak, M. A., Ray, S., Hsiao, S. S., Dammann, J. F. & Bensmaia, S. J. The neural coding of stimulus intensity: linking the population response of mechanoreceptive afferents with psychophysical behavior. J. Neurosci. 27, 11687–11699 (2007).

    CAS  Google Scholar 

  20. Weber, A. I. et al. Spatial and temporal codes mediate the tactile perception of natural textures. Proc. Natl Acad. Sci. USA 110, 17107–17112 (2013).

    CAS  Google Scholar 

  21. Johansson, R. S. & Birznieks, I. First spikes in ensembles of human tactile afferents code complex spatial fingertip events. Nat. Neurosci. 7, 170–177 (2004).

    CAS  Google Scholar 

  22. Proske, U. & Gandevia, S. C. The proprioceptive senses: their roles in signaling body shape, body position and movement, and muscle force. Physiol. Rev. 92, 1651–1697 (2012).

    CAS  Google Scholar 

  23. Macefield, G., Gandevia, S. C. & Burke, D. Perceptual responses to microstimulation of single afferents innervating joints, muscles and skin of the human hand. J. Physiol. 429, 113–129 (1990).

    CAS  Google Scholar 

  24. Rusaw, D., Hagberg, K., Nolan, L. & Ramstrand, N. Can vibratory feedback be used to improve postural stability in persons with transtibial limb loss? J. Rehabil. Res. Dev. 49, 1239–1254 (2012).

    Google Scholar 

  25. Dietrich, C. et al. Leg prosthesis with somatosensory feedback reduces phantom limb pain and increases functionality. Front. Neurol. 9, 270 (2018).

    Google Scholar 

  26. Shannon, G. F. A myoelectrically-controlled prosthesis with sensory feedback. Med. Biol. Eng. Comput. 17, 73–80 (1979).

    CAS  Google Scholar 

  27. Prior, R. E. Supplemental sensory feedback for the VA/NU myoelectric hand background and preliminary designs. Bull. Prosthet. Res. 22, 170–91 (1976).

    Google Scholar 

  28. Dosen, S., Schaeffer, M.-C. & Farina, D. Time-division multiplexing for myoelectric closed-loop control using electrotactile feedback. J. Neuroeng. Rehabil. 11, 138 (2014).

  29. Naples, G. G., Mortimer, J. T., Scheiner, A. & Sweeney, J. D. A spiral nerve cuff electrode for peripheral nerve stimulation. IEEE Trans. Biomed. Eng. 35, 905–916 (1988).

    CAS  Google Scholar 

  30. Tyler, D. J. & Durand, D. M. Functionally selective peripheral nerve stimulation with a flat interface nerve electrode. IEEE Trans. Neural Syst. Rehabil. Eng. 10, 294–303 (2002).

    Google Scholar 

  31. McNaughton, T. G. & Horch, K. W. Metallized polymer fibers as leadwires and intrafascicular microelectrodes. J. Neurosci. Methods 70, 103–107 (1996).

    CAS  Google Scholar 

  32. Poppendieck, W. et al. A new generation of double-sided intramuscular electrodes for multi-channel recording and stimulation. In 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 7135–7138 (IEEE, 2015).

  33. Wark, H. A. C. et al. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 10, 045003 (2013).

    CAS  Google Scholar 

  34. Boretius, T. et al. A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens. Bioelectron. 26, 62–69 (2010).

    CAS  Google Scholar 

  35. Hassler, C., Boretius, T. & Stieglitz, T. Polymers for neural implants. J. Polym. Sci. B 49, 18–33 (2011).

    CAS  Google Scholar 

  36. Ordonez, J., Schuettler, M., Boehler, C., Boretius, T. & Stieglitz, T. Thin films and microelectrode arrays for neuroprosthetics. MRS Bull. 37, 590–598 (2012).

    CAS  Google Scholar 

  37. Ortiz-Catalan, M., Mastinu, E., Sassu, P., Aszmann, O. & Brånemark, R. Self-contained neuromusculoskeletal arm prostheses. N. Engl. J. Med. 382, 1732–1738 (2020).

    Google Scholar 

  38. Badia, J., Pascual-Font, A., Vivó, M., Udina, E. & Navarro, X. Topographical distribution of motor fascicles in the sciatic-tibial nerve of the rat. Muscle Nerve 42, 192–201 (2010).

    Google Scholar 

  39. Freeberg, M. J., Stone, M. A., Triolo, R. J. & Tyler, D. J. The design of and chronic tissue response to a composite nerve electrode with patterned stiffness. J. Neural Eng. 14, 036022 (2017).

    CAS  Google Scholar 

  40. Lawrence, S. M., Dhillon, G. S. & Horch, K. W. Fabrication and characteristics of an implantable, polymer-based, intrafascicular electrode. J. Neurosci. Methods 131, 9–26 (2003).

    CAS  Google Scholar 

  41. Overstreet, C. K., Cheng, J. & Keefer, E. Fascicle specific targeting for selective peripheral nerve stimulation. J. Neural Eng. https://doi.org/10.1088/1741-2552/ab4370 (2019).

  42. Wurth, S. et al. Long-term usability and bio-integration of polyimide-based intra-neural stimulating electrodes. Biomaterials 122, 114–129 (2017).

    CAS  Google Scholar 

  43. Merrill, D. R., Bikson, M. & Jefferys, J. G. Electrical stimulation of excitable tissue: design of efficacious and safe protocols. J. Neurosci. Methods 141, 171–198 (2005).

    Google Scholar 

  44. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    CAS  Google Scholar 

  45. Rossini, P. M. et al. Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin. Neurophysiol. 121, 777–783 (2010).

    Google Scholar 

  46. Boretius, T. et al. A transverse intrafascicular multichannel electrode (TIME) to treat phantom limb pain—towards human clinical trials. In 2012 4th IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob) 282–287 (IEEE, 2012).

  47. Rose, T. L. & Robblee, L. S. Electrical stimulation with Pt electrodes. VIII. Electrochemically safe charge injection limits with 0.2 ms pulses (neuronal application). IEEE Trans. Biomed. Eng. 37, 1118–1120 (1990).

    CAS  Google Scholar 

  48. Cogan, S. F. et al. Sputtered iridium oxide films for neural stimulation electrodes. J. Biomed. Mater. Res. B 89, 353–361 (2009).

    Google Scholar 

  49. Grill, W. M. & Mortimer, J. T. Neural and connective tissue response to long-term implantation of multiple contact nerve cuff electrodes. J. Biomed. Mater. Res. 50, 215–226 (2000).

    CAS  Google Scholar 

  50. Polasek, K. H., Hoyen, H. A., Keith, M. W., Kirsch, R. F. & Tyler, D. J. Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity. IEEE Trans. Neural Syst. Rehabil. Eng. 17, 428–437 (2009).

    Google Scholar 

  51. Tyler, D. J. & Durand, D. M. Chronic response of the rat sciatic nerve to the flat interface nerve electrode. Ann. Biomed. Eng. 31, 633–642 (2003).

    Google Scholar 

  52. Leventhal, D. K., Cohen, M. & Durand, D. M. Chronic histological effects of the flat interface nerve electrode. J. Neural Eng. 3, 102 (2006).

    Google Scholar 

  53. Tan, D. W. et al. A neural interface provides long-term stable natural touch perception. Sci. Transl. Med. 6, 257ra138 (2014).

    Google Scholar 

  54. Lago, N., Yoshida, K., Koch, K. P. & Navarro, X. Assessment of biocompatibility of chronically implanted polyimide and platinum intrafascicular electrodes. IEEE Trans. Biomed. Eng. 54, 281–290 (2007).

    Google Scholar 

  55. Badia, J. et al. Biocompatibility of chronically implanted transverse intrafascicular multichannel electrode (TIME) in the rat sciatic nerve. IEEE Trans. Biomed. Eng. 58, 2324–2332 (2011).

    Google Scholar 

  56. Branner, A., Stein, R. B., Fernandez, E., Aoyagi, Y. & Normann, R. A. Long-term stimulation and recording with a penetrating microelectrode array in cat sciatic nerve. IEEE Trans. Biomed. Eng. 51, 146–157 (2004).

    Google Scholar 

  57. Christensen, M. B., Wark, H. A. & Hutchinson, D. T. A histological analysis of human median and ulnar nerves following implantation of Utah slanted electrode arrays. Biomaterials 77, 235–242 (2016).

    CAS  Google Scholar 

  58. Schady, W., Braune, S., Watson, S., Torebjörk, H. E. & Schmidt, R. Responsiveness of the somatosensory system after nerve injury and amputation in the human hand. Ann. Neurol. 36, 68–75 (1994).

    CAS  Google Scholar 

  59. Clippinger, F. W., Avery, R. & Titus, B. R. A sensory feedback system for an upper-limb amputation prosthesis. Bull. Prosthet. Res. 10, 247–258 (1974).

  60. Clippinger, F. W., Seaber, A. V., McElhaney, J. H., Harrelson, J. M. & Maxwell, G. M. Afferent sensory feedback for lower extremity prosthesis. Clin. Orthop. Relat. Res. 169, 202–206 (1982).

  61. Dhillon, G. S., Lawrence, S. M., Hutchinson, D. T. & Horch, K. W. Residual function in peripheral nerve stumps of amputees: implications for neural control of artificial limbs. J. Hand Surg. Am. 29, 605–615 (2004).

  62. Dhillon, G. S. & Horch, K. W. Direct neural sensory feedback and control of a prosthetic arm. IEEE Trans. Neural Syst. Rehabil. Eng. 13, 468–472 (2005).

    Google Scholar 

  63. Valle, G. et al. Comparison of linear frequency and amplitude modulation for intraneural sensory feedback in bidirectional hand prostheses. Sci. Rep. 8, 16666 (2018).

    CAS  Google Scholar 

  64. Raspopovic, S. et al. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 6, 222ra19 (2014).

    Google Scholar 

  65. Valle, G. et al. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. Neuron https://doi.org/10.1016/j.neuron.2018.08.033 (2018).

  66. George, J. A. et al. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. Sci. Robot. 4, eaax2352 (2019).

    Google Scholar 

  67. Horch, K., Meek, S., Taylor, T. G. & Hutchinson, D. T. Object discrimination with an artificial hand using electrical stimulation of peripheral tactile and proprioceptive pathways with intrafascicular electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 483–489 (2011).

    Google Scholar 

  68. Zollo, L. et al. Restoring tactile sensations via neural interfaces for real-time force-and-slippage closed-loop control of bionic hands. Sci. Robot. 4, eaau9924 (2019).

    Google Scholar 

  69. Ortiz-Catalan, M., Hakansson, B. & Branemark, R. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. Sci. Transl. Med. 6, 257re6 (2014).

    Google Scholar 

  70. Oddo, C. M. et al. Intraneural stimulation elicits discrimination of textural features by artificial fingertip in intact and amputee humans. eLife 5, e09148 (2016).

  71. Davis, T. S. et al. Restoring motor control and sensory feedback in people with upper extremity amputations using arrays of 96 microelectrodes implanted in the median and ulnar nerves. J. Neural Eng. 13, 036001 (2016).

    CAS  Google Scholar 

  72. Wendelken, S. et al. Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah slanted electrode arrays (USEAs) implanted in residual peripheral arm nerves. J. Neuroeng. Rehabil. 14, 121 (2017).

    Google Scholar 

  73. Rognini, G. et al. Multisensory bionic limb to achieve prosthesis embodiment and reduce distorted phantom limb perceptions. J. Neurol. Neurosurg. Psychiatry 90, 833–836 (2019).

    Google Scholar 

  74. Segil, J. L., Cuberovic, I., Graczyk, E. L., Weir, R. F. ff. & Tyler, D. Combination of simultaneous artificial sensory percepts to identify prosthetic hand postures: a case study. Sci. Rep. 10, 6576 (2020).

  75. Graczyk, E. L., Resnik, L., Schiefer, M. A., Schmitt, M. S. & Tyler, D. J. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. Sci. Rep. 8, 9866 (2018).

    Google Scholar 

  76. Tan, D. W., Schiefer, M. A., Keith, M. W., Anderson, J. R. & Tyler, D. J. Stability and selectivity of a chronic, multi-contact cuff electrode for sensory stimulation in human amputees. J. Neural Eng. 12, 026002 (2015).

    Google Scholar 

  77. Kuiken, T. A. et al. Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. JAMA 301, 619–628 (2009).

    CAS  Google Scholar 

  78. Kuiken, T. A. et al. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. Lancet 369, 371–380 (2007).

    Google Scholar 

  79. Kuiken, T. A., Marasco, P. D., Lock, B. A., Harden, R. N. & Dewald, J. P. A. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. Proc. Natl Acad. Sci. USA 104, 20061–20066 (2007).

    CAS  Google Scholar 

  80. Schofield, J. S., Shell, C. E., Beckler, D. T., Thumser, Z. C. & Marasco, P. D. Long-term home-use of sensory-motor-integrated bidirectional bionic prosthetic arms promotes functional, perceptual, and cognitive changes. Front Neurosci. 14, 120 (2020).

    Google Scholar 

  81. Osborn, L., Betthauser, J., Kaliki, R. & Thakor, N. Live demonstration: targeted transcutaneous electrical nerve stimulation for phantom limb sensory feedback. In 2017 IEEE Biomedical Circuits and Systems Conference (BioCAS) 1-1 (IEEE, 2017); https://doi.org/10.1109/BIOCAS.2017.8325101

  82. Charkhkar, H. et al. High-density peripheral nerve cuffs restore natural sensation to individuals with lower-limb amputations. J. Neural Eng. 15, 056002 (2018).

    Google Scholar 

  83. Petrini, F. M. et al. Sensory feedback restoration in leg amputees improves walking speed, metabolic cost and phantom pain. Nat. Med. 25, 1356–1363 (2019).

    CAS  Google Scholar 

  84. Petrini, F. M. et al. Enhancing functional abilities and cognitive integration of the lower limb prosthesis. Sci. Transl. Med. 11, eaav8939 (2019).

    Google Scholar 

  85. Mundell, B. F. et al. The risk of major cardiovascular events for adults with transfemoral amputation. J. Neuroeng. Rehabil. 15, 58 (2018).

    Google Scholar 

  86. Clites, T. R. et al. Proprioception from a neurally controlled lower-extremity prosthesis. Sci. Transl. Med. 10, eaap8373 (2018).

    Google Scholar 

  87. Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

    CAS  Google Scholar 

  88. Marasco, P. D. et al. Illusory movement perception improves motor control for prosthetic hands. Sci. Transl. Med. 10, eaao6990 (2018).

    Google Scholar 

  89. Gandevia, S. C. Illusory movements produced by electrical stimulation of low-threshold muscle afferents from the hand. Brain 108, 965–981 (1985).

    Google Scholar 

  90. Ekedahl, R., Frank, O. & Hallin, R. G. Peripheral afferents with common function cluster in the median nerve and somatotopically innervate the human palm. Brain Res. Bull. 42, 367–376 (1997).

    CAS  Google Scholar 

  91. Hagbarth, K. E., Wallen, G. & Löfstedt, L. Muscle spindle activity in man during voluntary fast alternating movements. J. Neurol. Neurosurg. Psychiatry 38, 625–635 (1975).

    CAS  Google Scholar 

  92. Stewart, J. D. Peripheral nerve fascicles: anatomy and clinical relevance. Muscle Nerve 28, 525–541 (2003).

    Google Scholar 

  93. D’Anna, E. et al. A closed-loop hand prosthesis with simultaneous intraneural tactile and position feedback. Sci. Robot. 4, eaau8892 (2019).

    Google Scholar 

  94. de la Oliva, N., Mueller, M., Stieglitz, T., Navarro, X. & del Valle, J. On the use of parylene C polymer as substrate for peripheral nerve electrodes. Sci. Rep. 8, 5965 (2018).

  95. Preatoni, G., Valle, G., Petrini, F. M. & Raspopovic, S. Lightening the perceived prosthesis weight with neural embodiment promoted by sensory feedback. Curr. Biol. 31, 1065–1071 (2021).

  96. Gerratt, A. P., Michaud, H. O. & Lacour, S. P. Elastomeric electronic skin for prosthetic tactile sensation. Adv. Funct. Mater. 25, 2287–2295 (2015).

    CAS  Google Scholar 

  97. Hua, Q. et al. Skin-inspired highly stretchable and conformable matrix networks for multifunctional sensing. Nat. Commun. 9, 244 (2018).

    Google Scholar 

  98. Lee, W. W. et al. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 4, eaax2198 (2019).

    Google Scholar 

  99. Saal, H. P. & Bensmaia, S. J. Biomimetic approaches to bionic touch through a peripheral nerve interface. Neuropsychologia 79, 344–353 (2015).

    Google Scholar 

  100. Kim, L. H., McLeod, R. S. & Kiss, Z. H. A new psychometric questionnaire for reporting of somatosensory percepts. J. Neural Eng. 15, 013002 (2018).

    CAS  Google Scholar 

  101. Hafner, B. J. & Smith, D. G. Differences in function and safety between Medicare functional classification level-2 and-3 transfemoral amputees and influence of prosthetic knee joint control. J. Rehabil. Res. Dev. 46, 417–433 (2009).

    Google Scholar 

  102. Navarro, X. et al. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10, 229–258 (2005).

    Google Scholar 

  103. Ochoa, J. & Torebjörk, E. Sensations evoked by intraneural microstimulation of single mechanoreceptor units innervating the human hand. J. Physiol. 342, 633–654 (1983).

    CAS  Google Scholar 

  104. Zelechowski, M., Valle, G. & Raspopovic, S. A computational model to design neural interfaces for lower-limb sensory neuroprostheses. J. Neuroeng. Rehabil. 17, 24 (2020).

  105. Raspopovic, S. Advancing limb neural prostheses. Science 370, 290–291 (2020).

    CAS  Google Scholar 

  106. Llewellyn, M. E., Thompson, K. R., Deisseroth, K. & Delp, S. L. Orderly recruitment of motor units under optical control in vivo. Nat. Med. 16, 1161–1165 (2010).

    CAS  Google Scholar 

  107. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    CAS  Google Scholar 

  108. Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Google Scholar 

  109. Abraira, V. E. & Ginty, D. D. The sensory neurons of touch. Neuron 79, 618–639 (2013).

    CAS  Google Scholar 

  110. Johansson, R. S. & Flanagan, J. R. in The Senses: A Comprehensive Reference 67–86 (Academic Press, 2008).

  111. Johansson, R. S. & Vallbo, A. B. Tactile sensibility in the human hand: relative and absolute densities of four types of mechanoreceptive units in glabrous skin. J. Physiol. 286, 283–300 (1979).

    CAS  Google Scholar 

  112. Johansson, R. S. & Vallbo, Å. B. Tactile sensory coding in the glabrous skin of the human hand. Trends Neurosci. 6, 27–32 (1983).

  113. Yildiz, K. A., Shin, A. Y. & Kaufman, K. R. Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review. J. Neuroeng. Rehabil. 17, 43 (2020).

    Google Scholar 

  114. Benvenuto, A. et al. Intrafascicular thin-film multichannel electrodes for sensory feedback: evidences on a human amputee. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology 1800–1803 (IEEE, 2010).

  115. Negi, S., Bhandari, R., Rieth, L. & Solzbacher, F. In vitro comparison of sputtered iridium oxide and platinum-coated neural implantable microelectrode arrays. Biomed. Mater. 5, 15007 (2010).

    CAS  Google Scholar 

  116. Badia, J. et al. in Direct Nerve Stimulation for Induction of Sensation and Treatment of Phantom Limb Pain 155–169 (River Publishers, 2019).

  117. Graczyk, E. L., Delhaye, B. P., Schiefer, M. A., Bensmaia, S. J. & Tyler, D. J. Sensory adaptation to electrical stimulation of the somatosensory nerves. J. Neural Eng. 15, 046002 (2018).

    Google Scholar 

  118. Strauss, I. et al. Characterization of multi-channel intraneural stimulation in transradial amputees. Sci. Rep. 9, 9258 (2019).

  119. Kluger, D. T. et al. Virtual reality provides an effective platform for functional evaluations of closed-loop neuromyoelectric control. IEEE Trans. Neural Syst. Rehabil. Eng. 27, 876–886 (2019).

    Google Scholar 

Download references

Acknowledgements

We acknowledge support from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme FeelAgain (grant agreement no. 759998), by H2020-EIC-FTI-2018-2020 GoSafe (grant agreement no. 870144), by the Swiss National Science Foundation (SNSF) and Innosuisse under the Bridge Proof of Concept programme (MYLEG no. 193724), SNSF grant MOVEIT (no. 205321_197271) and Innosuisse grant (no. 47462.1 IP-ICT). The funders had no role in the manuscript preparation or submission.

Author information

Authors and Affiliations

Authors

Contributions

S.R., G.V. and F.M.P. conceived the Review, edited the manuscript and made the figures. S.R. wrote the section ‘The role of materials in the development of neuroprostheses’. G.V. wrote the section ‘Bionic limb applications’. F.M.P. wrote the section ‘Sensory feedback is an unmet need for prosthetic users’. S.R., G.V. and F.M.P. wrote the section ‘Prospective and big picture’. All authors authorized submission of the manuscript, but the final submission decision was made by the corresponding author.

Corresponding author

Correspondence to Stanisa Raspopovic.

Ethics declarations

Competing interests

S.R. and F.M.P. hold shares of SensArs Neuroprosthetics Sarl, a start-up company dealing with the commercialization of neurocontrolled artificial limbs. G.V. declares no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Raspopovic, S., Valle, G. & Petrini, F.M. Sensory feedback for limb prostheses in amputees. Nat. Mater. 20, 925–939 (2021). https://doi.org/10.1038/s41563-021-00966-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00966-9

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing