This is a turning point for nanofluidics. Recent progress allows envisioning both fundamental discoveries for the transport of fluids at the ultimate scales, and disruptive technologies for the water–energy nexus.
This is a preview of subscription content
Access options
Subscription info for Chinese customers
We have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.
References
Bocquet, L. & Charlaix, E. Chem. Soc. Rev. 9, 1073–1095 (2010).
Celebi, K. et al. Science 344, 289–292 (2014).
Jain, T. et al. Nat. Nanotechnol. 10, 1053–1057 (2015).
Kidambi, P. R. et al. Adv. Mater. 30, 1804977 (2018).
Walker, M. I. et al. ACS Nano 11, 1340–1346 (2017).
Feng, J. et al. Nature 536, 197–200 (2016).
Feng, J. et al. Nat. Mater. 15, 850–855 (2016).
Garaj, S. et al. Nature 467, 190–193 (2010).
O’Hern, S. C. et al. Nano Lett. 14, 1234–1241 (2014).
Lee, C. Y., Choi, W., Han, J. H. & Strano, M. S. Science 329, 1320–1324 (2010).
Siria, A. et al. Nature 494, 455–458 (2013).
Secchi, E. et al. Nature 537, 210–213 (2016).
Yazda, K. et al. Nanoscale 9, 11976–11986 (2017).
Liu, L., Yang, C., Zhao, K., Li, J. & Wu, H.-C. Nat. Commun. 4, 2989 (2013).
Tunuguntla, R. H. et al. Science 357, 792–796 (2017).
Radha, B. et al. Nature 538, 222–225 (2016).
Esfandiar, A. et al. Science 358, 511–513 (2017).
Faucher, S. et al. J. Phys. Chem. C 123, 21309–21326 (2019).
Agrawal, K. V., Shimizu, S., Drahushuk, L. W., Kilcoyne, D. & Strano, M. S. Nat. Nanotechnol. 12, 267–273 (2017).
Holt, J. K. et al. Science 312, 1034–1037 (2006).
Fumagalli, L. et al. Science 360, 1339–1342 (2018).
Rabinowitz, J., Cohen, C. & Shepard, K. L. Nano Lett. https://doi.org/10.1021/acs.nanolett.9b04552 (2019).
Siria, A., Bocquet, M.-L. & Bocquet, L. Nat. Rev. Chem. 1, 0091 (2017).
Sholl, D. S. & Lively, R. P. Nature 532, 435–437 (2016).
Marbach, S. & Bocquet, L. Chem. Soc. Rev. 48, 3102–3144 (2019).
Abraham, J. et al. Nat Nanotechnol. 12, 546–550 (2017).
Xie, Q. et al. Nat. Nanotechnol. 13, 238–245 (2018).
Hu, S. et al. Nat. Nanotechnol. 13, 468–472 (2018).
Mouterde, T. et al. Nature 567, 87–90 (2019).
Cantley, L. et al. Nanoscale 11, 9856–9861 (2019).
Grosjean, B., Bocquet, M.-L. & Vuilleumier, R. Nat. Commun. 10, 1656 (2019).
Ghosh, S., Sood, A. K. & Kumar, N. Science 299, 1042–1044 (2003).
Barboiu, M. Chem. Commun. 52, 5657–5665 (2016).
Xiao, K. et al. Nat. Commun. 10, 74 (2019).
Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Science 356, eaab0530 (2017).
Wang, L. et al. Nat. Nanotech. 12, 509–522 (2017).
Akbari, A. et al. Nat. Commun. 7, 10891 (2016).
Hong, S. et al. Nano Lett. 17, 728–732 (2017).
Ries, L. et al. Nat. Mater. 18, 1112–1117 (2019).
Yang, Y. et al. ACS Nano 12, 4695–4701 (2018).
Straub, A. P., Deshmukh, A. & Elimelech, M. Energy Environ. Sci. 9, 31–48 (2016).
Lokesh, M., Youn, S. K. & Park, H. G. Nano Lett. 18, 6679–6685 (2018).
Graf, M. et al. Joule 3, 1549–1564 (2019).
Xin, W. et al. Nat. Commun. 10, 3876 (2019).
Comtet, J. et al. Preprint at https://arxiv.org/abs/1906.09019 (2019).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020). https://doi.org/10.1038/s41563-020-0625-8
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-020-0625-8
Further reading
-
Enhanced nanofluidic transport in activated carbon nanoconduits
Nature Materials (2022)
-
Fluctuation-induced quantum friction in nanoscale water flows
Nature (2022)
-
Water and carbon make a quantum couple
Nature (2022)
-
Advancing osmotic power generation by covalent organic framework monolayer
Nature Nanotechnology (2022)
-
Ionic liquids on uncharged and charged surfaces: In situ microstructures and nanofriction
Friction (2022)