Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tuning spin excitations in magnetic films by confinement

Abstract

Spin excitations of magnetic thin films are the founding element for magnetic devices in general. While spin dynamics have been extensively studied in bulk materials, the behaviour in mesoscopic films is less known due to experimental limitations. Here, we employ resonant inelastic X-ray scattering to investigate the spectrum of spin excitations in mesoscopic Fe films, from bulk-like films down to three unit cells. In bulk samples, we find isotropic, dispersive ferromagnons consistent with previous neutron scattering results for bulk single crystals. As the thickness is reduced, these ferromagnetic spin excitations renormalize to lower energies along the out-of-plane direction while retaining their dispersion in the in-plane direction. This thickness dependence is captured by simple Heisenberg model calculations accounting for the confinement in the out-of-plane direction through the loss of Fe bonds. Our findings highlight the effects of mesoscopic scaling on spin dynamics and identify thickness as a knob for fine tuning and controlling magnetic properties.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Fe L3 XAS of Fe films versus thickness and representative RIXS measurement from Fe bulk-like film.
Fig. 2: Momentum dependence of the ferromagnetic spin excitations in the bulk-like Fe film.
Fig. 3: Anisotropic momentum dependence of the spin excitations in Fe films as a function of thickness.
Fig. 4: Confinement effect on the spin excitations in mesoscaled Fe films.

Data availability

Data that support the findings of this study are available upon reasonable request from the corresponding authors.

References

  1. Han, W., Maekawa, S. & Xie, X.-C. Spin current as a probe of quantum materials. Nat. Mater. 19, 139–152 (2020).

    CAS  Google Scholar 

  2. Han, J., Zhang, P., Hou, J. T., Siddiqui, S. A. & Liu, L. Mutual control of coherent spin waves and magnetic domain walls in a magnonic device. Science 366, 1121–1125 (2019).

    CAS  Google Scholar 

  3. Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).

    CAS  Google Scholar 

  4. Manchon, A. et al. Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems. Rev. Mod. Phys. 91, 035004 (2019).

    CAS  Google Scholar 

  5. Wang, Y. et al. Magnetization switching by magnon-mediated spin torque through an antiferromagnetic insulator. Science 366, 1125–1128 (2019).

    CAS  Google Scholar 

  6. Sun, W. et al. Understanding memristive switching via in situ characterization and device modeling. Nat. Commun. 10, 3453 (2019).

    Google Scholar 

  7. Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

    Google Scholar 

  8. Rana, B. & Otani, Y. Towards magnonic devices based on voltage-controlled magnetic anisotropy. Commun. Phys. 2, 90 (2019).

    Google Scholar 

  9. Han, W., Otani, Y. & Maekawa, S. Quantum materials for spin and charge conversion. npj Quant. Mater. 3, 27 (2018).

    Google Scholar 

  10. Wang, S. et al. Spin-wave propagation steered by electric field modulated exchange interaction. Sci. Rep. 6, 31783 (2016).

    CAS  Google Scholar 

  11. Brächer, T. et al. Phase-to-intensity conversion of magnonic spin currents and application to the design of a majority gate. Sci. Rep. 6, 38235 (2016).

    Google Scholar 

  12. Demidov, V. E., Urazhdin, S. & Demokritov, S. O. Control of spin-wave phase and wavelength by electric current on the microscopic scale. Appl. Phys. Lett. 95, 262509 (2009).

    Google Scholar 

  13. Soumyanarayanan, A., Reyren, N., Fert, A. & Panagopoulos, C. Emergent phenomena induced by spin–orbit coupling at surfaces and interfaces. Nature 539, 509–517 (2016).

    CAS  Google Scholar 

  14. Martin, L. W. & Rappe, A. M. Thin-film ferroelectric materials and their applications. Nat. Rev. Mater. 2, 16087 (2016).

    Google Scholar 

  15. Hwang, H. Y. et al. Emergent phenomena at oxide interfaces. Nat. Mater. 11, 103–113 (2012).

    CAS  Google Scholar 

  16. Nagaoka, Y. Dynamical theory of spin waves in ferromagnetic metals with s-d exchange interaction. Prog. Theor. Phys. 28, 1033–1047 (1962).

    CAS  Google Scholar 

  17. Gall, D. Electron mean free path in elemental metals. J. Appl. Phys. 119, 085101 (2016).

    Google Scholar 

  18. Shirane, G., Minkiewicz, V. J. & Nathans, R. Spin waves in 3d metals. J. Appl. Phys. 39, 383–390 (1968).

    CAS  Google Scholar 

  19. Mook, H. A. & Nicklow, R. M. Neutron scattering investigation of the magnetic excitations in iron. Phys. Rev. B 7, 336–342 (1973).

    CAS  Google Scholar 

  20. Perring, T. G. et al. High-energy spin waves in bcc iron. J. Appl. Phys. 69, 6219–6221 (1991).

    CAS  Google Scholar 

  21. Tranquada, J. M., Xu, G. & Zaliznyak, I. A. Superconductivity, antiferromagnetism, and neutron scattering. J. Magn. Magn. Mater. 350, 148–160 (2014).

    CAS  Google Scholar 

  22. Zhang, Y. et al. Nonmonotonic thickness dependence of spin wave energy in ultrathin Fe films: experiment and theory. Phys. Rev. B 81, 094438 (2010).

    Google Scholar 

  23. Prokop, J. et al. Magnons in a ferromagnetic monolayer. Phys. Rev. Lett. 102, 177206 (2009).

    CAS  Google Scholar 

  24. Zakeri, K., Zhang, Y. & Kirschner, J. Surface magnons probed by spin-polarized electron energy loss spectroscopy. J. Electron Spectrosc. Relat. Phenom. 189, 157–163 (2013).

    CAS  Google Scholar 

  25. Chuang, T.-H. et al. Impact of atomic structure on the magnon dispersion relation: a comparison between Fe(111)/Au/W(110) and Fe(110)/W(110). Phys. Rev. Lett. 109, 207201 (2012).

    Google Scholar 

  26. Grünberg, P., Cottam, M. G., Vach, W., Mayr, C. & Camley, R. E. Brillouin scattering of light by spin waves in thin ferromagnetic films (invited). J. Appl. Phys. 53, 2078–2083 (1982).

    Google Scholar 

  27. Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

    CAS  Google Scholar 

  28. Hashimoto, Y. et al. All-optical observation and reconstruction of spin wave dispersion. Nat. Commun. 8, 15859 (2017).

    CAS  Google Scholar 

  29. Zhou, K.-J. et al. Persistent high-energy spin excitations in iron-pnictide superconductors. Nat. Commun. 4, 1470 (2013).

    Google Scholar 

  30. Pelliciari, J. et al. Reciprocity between local moments and collective magnetic excitations in the phase diagram of BaFe2(As1−xPx)2. Commun. Phys. 2, 139 (2019).

    Google Scholar 

  31. le Tacon, M. et al. Intense paramagnon excitations in a large family of high-temperature superconductors. Nat. Phys. 7, 725–730 (2011).

    Google Scholar 

  32. Lee, W. S. et al. Asymmetry of collective excitations in electron- and hole-doped cuprate superconductors. Nat. Phys. 10, 883–889 (2014).

    CAS  Google Scholar 

  33. Peng, Y. Y. et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 13, 1201–1206 (2017).

  34. Suzuki, H. et al. Spin waves and spin-state transitions in a ruthenate high-temperature antiferromagnet. Nat. Mater. 18, 563–567 (2019).

    CAS  Google Scholar 

  35. Brookes, N. B. et al. Spin waves in metallic iron and nickel measured by soft X-ray resonant inelastic scattering. Phys. Rev. B 102, 064412 (2020).

    CAS  Google Scholar 

  36. Dean, M. P. M. et al. Spin excitations in a single La2CuO4 layer. Nat. Mater. 11, 850–854 (2012).

    CAS  Google Scholar 

  37. Bisogni, V. et al. Ground-state oxygen holes and the metal–insulator transition in the negative charge-transfer rare-earth nickelates. Nat. Commun. 7, 13017 (2016).

    CAS  Google Scholar 

  38. Regan, T. J. et al. Chemical effects at metal/oxide interfaces studied by X-ray-absorption spectroscopy. Phys. Rev. B 64, 214422 (2001).

    Google Scholar 

  39. Jiménez-Villacorta, F., Prieto, C., Huttel, Y., Telling, N. D. & van der Laan, G. X-ray magnetic circular dichroism study of the blocking process in nanostructured iron-iron oxide core-shell systems. Phys. Rev. B 84, 172404 (2011).

    Google Scholar 

  40. Dvorak, J., Jarrige, I., Bisogni, V., Coburn, S. & Leonhardt, W. Towards 10 meV resolution: the design of an ultrahigh resolution soft X-ray RIXS spectrometer. Rev. Sci. Instrum. 87, 115109 (2016).

    Google Scholar 

  41. Bergsma, J., van Dijk, C. & Tocchetti, D. Normal vibrations in α-iron. Phys. Lett. A 24, 270–272 (1967).

    CAS  Google Scholar 

  42. Minkiewicz, V. J., Shirane, G. & Nathans, R. Phonon dispersion relation for iron. Phys. Rev. 162, 528–531 (1967).

    CAS  Google Scholar 

  43. Collins, M. F., Minkiewicz, V. J., Nathans, R., Passell, L. & Shirane, G. Critical and spin-wave scattering of neutrons from iron. Phys. Rev. 179, 417–430 (1969).

    CAS  Google Scholar 

  44. Paul, D. M., Mitchell, P. W., Mook, H. A. & Steigenberger, U. Observation of itinerant-electron effects on the magnetic excitations of iron. Phys. Rev. B 38, 580–582 (1988).

    CAS  Google Scholar 

  45. Lynn, J. W. Temperature dependence of the magnetic excitations in iron. Phys. Rev. B 11, 2624–2637 (1975).

    CAS  Google Scholar 

  46. Magnus, F. et al. Long-range magnetic interactions and proximity effects in an amorphous exchange-spring magnet. Nat. Commun. 7, ncomms11931 (2016).

    CAS  Google Scholar 

  47. Pajda, M., Kudrnovský, J., Turek, I., Drchal, V. & Bruno, P. Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni. Phys. Rev. B 64, 174402 (2001).

    Google Scholar 

  48. Turek, I., Kudrnovský, J., Drchal, V. & Bruno, P. Exchange interactions, spin waves, and transition temperatures in itinerant magnets. Philos. Mag. 86, 1713–1752 (2006).

    CAS  Google Scholar 

  49. Shirane, G., Nathans, R., Steinsvoll, O., Alperin, H. A. & Pickart, S. J. Measurement of the magnon dispersion relation of iron. Phys. Rev. Lett. 15, 146–148 (1965).

    CAS  Google Scholar 

  50. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    CAS  Google Scholar 

Download references

Acknowledgements

We are indebted to J. Hill, C. Mazzoli, J. Tranquada, T. Ziman, M. Stiles, P. Bruno, M. Hybertsen and E. Vescovo for fruitful discussions. J.P. thanks A. Pelliciari for his lifelong support. This work was supported by the US Department of Energy (DOE) Office of Science, Early Career Research Program. Work at Yale University was supported by the US DOE, Office of Science, Office of Basic Energy Sciences under award no. DE-SC0019211. K.G. was supported by the US DOE, Office of Science, Basic Energy Sciences as part of the Computational Materials Science Program. This research used beamline 2-ID of NSLS-II, a US DOE Office of Science User Facility operated for the DOE Office of Science by Brookhaven National Laboratory under contract no. DE-SC0012704. Surface X-ray diffraction measurements were performed at beamline 33-ID-D of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357.

Author information

Affiliations

Authors

Contributions

V.B. conceived the project. J.P., S.L., J.L., Y.G., A.B., I.J. and V.B. performed the RIXS experiments. S.L., C.H.A. and F.J.W. prepared the Fe/MgO thin films and characterized them using SQUID and X-ray reflectometry. V.B. analysed and interpreted the data, with the help of J.P.; K.G. performed the theory calculations. J.P. and V.B. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Jonathan Pelliciari or Valentina Bisogni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Eiji Saitoh and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Tables 1–2 and Notes 1–4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pelliciari, J., Lee, S., Gilmore, K. et al. Tuning spin excitations in magnetic films by confinement. Nat. Mater. 20, 188–193 (2021). https://doi.org/10.1038/s41563-020-00878-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-00878-0

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing