Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Musical evolution in the lab exhibits rhythmic universals

Abstract

Music exhibits some cross-cultural similarities, despite its variety across the world. Evidence from a broad range of human cultures suggests the existence of musical universals1, here defined as strong regularities emerging across cultures above chance. In particular, humans demonstrate a general proclivity for rhythm2, although little is known about why music is particularly rhythmic and why the same structural regularities are present in rhythms around the world. We empirically investigate the mechanisms underlying musical universals for rhythm, showing how music can evolve culturally from randomness. Human participants were asked to imitate sets of randomly generated drumming sequences and their imitation attempts became the training set for the next participants in independent transmission chains. By perceiving and imitating drumming sequences from each other, participants turned initially random sequences into rhythmically structured patterns. Drumming patterns developed into rhythms that are more structured, easier to learn, distinctive for each experimental cultural tradition and characterized by all six statistical universals found among world music1; the patterns appear to be adapted to human learning, memory and cognition. We conclude that musical rhythm partially arises from the influence of human cognitive and biological biases on the process of cultural evolution3.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Cultural transmission over generations by iterated learning.
Figure 2: Frequency distributions of IOIs in drumming sequences for each chain (rows) and generation (columns).
Figure 3: Emergence of rhythmic riffs and cultural specificity.
Figure 4: Statistical universals in durational patterns.

References

  1. Savage, P. E., Brown, S., Sakai, E. & Currie, T. E. Statistical universals reveal the structures and functions of human music. Proc. Natl Acad. Sci. USA 112, 8987–8992 (2015).

    CAS  Article  Google Scholar 

  2. Fitch, W. T. in Language and Music as Cognitive Systems (eds Rebuschat, P. et al. ) Ch. 11, 73–95 (Oxford Univ. Press, 2009).

    Google Scholar 

  3. Trehub, S. E. Cross-cultural convergence of musical features. Proc. Natl Acad. Sci. USA 112, 8809–8810 (2015).

    CAS  Article  Google Scholar 

  4. Ravignani, A. et al. Primate drum kit: a system for studying acoustic pattern production by non-human primates using acceleration and strain sensors. Sensors 13, 9790–9820 (2013).

    Article  Google Scholar 

  5. Fuhrmann, D., Ravignani, A., Marshall-Pescini, S. & Whiten, A. Synchrony and motor mimicking in chimpanzee observational learning. Sci. Rep. 4, 5283 (2014).

    CAS  Article  Google Scholar 

  6. Dufour, V., Poulin, N., Curé, C. & Sterck, E. H. Chimpanzee drumming: a spontaneous performance with characteristics of human musical drumming. Sci. Rep. 5, 11320 (2015).

    CAS  Article  Google Scholar 

  7. Morley, I. The Evolutionary Origins and Archaeology of Music PhD thesis, Cambridge Univ. (2003).

    Google Scholar 

  8. Fritz, T. et al. Universal recognition of three basic emotions in music. Curr. Biol. 19, 573–576 (2009).

    CAS  Article  Google Scholar 

  9. Repp, B. H., Iversen, J. R. & Patel, A. D. Tracking an imposed beat within a metrical grid. Music Percept. 26, 1–18 (2008).

    Article  Google Scholar 

  10. Winkler, I., Háden, G. P., Ladinig, O., Sziller, I. & Honing, H. Newborn infants detect the beat in music. Proc. Natl Acad. Sci. USA 106, 2468–2471 (2009).

    CAS  Article  Google Scholar 

  11. Brown, S. & Jordania, J. Universals in the world’s musics. Psychol. Music 41, 229–248 (2013).

    Article  Google Scholar 

  12. Le Bomin, S., Lecointre, G. & Heyer, E. The evolution of musical diversity: the key role of vertical transmission. PloS ONE 11, e0151570 (2016).

    Article  Google Scholar 

  13. Morgan, T. et al. Experimental evidence for the co-evolution of hominin tool-making teaching and language. Nat. Commun. 6, 6029 (2015).

    CAS  Article  Google Scholar 

  14. Kirby, S., Dowman, M. & Griffiths, T. L. Innateness and culture in the evolution of language. Proc. Natl Acad. Sci. USA 104, 5241–5245 (2007).

    CAS  Article  Google Scholar 

  15. Kirby, S. & Hurford, J. R. in Simulating the Evolution of Language (eds Cangelosi, A. & Parisi, D. ) 121–147 (Springer, 2002).

    Book  Google Scholar 

  16. Mesoudi, A. & Whiten, A. The multiple roles of cultural transmission experiments in understanding human cultural evolution. Phil. Trans. R. Soc. B 363, 3489–3501 (2008).

    Article  Google Scholar 

  17. Verhoef, T., Kirby, S. & de Boer, B. Emergence of combinatorial structure and economy through iterated learning with continuous acoustic signals. J. Phonetics 43, 57–68 (2014).

    Article  Google Scholar 

  18. Tamariz, M. & Kirby, S. Culture: copying, compression, and conventionality. Cogn. Sci. 39, 171–183 (2015).

    Article  Google Scholar 

  19. Kirby, S., Cornish, H. & Smith, K. Cumulative cultural evolution in the laboratory: an experimental approach to the origins of structure in human language. Proc. Natl Acad. Sci. USA 105, 10681–10686 (2008).

    CAS  Article  Google Scholar 

  20. Kirby, S., Tamariz, M., Cornish, H. & Smith, K. Compression and communication in the cultural evolution of linguistic structure. Cognition 141, 87–102 (2015).

    Article  Google Scholar 

  21. Cornish, H., Smith, K. & Kirby, S. Systems from sequences: an iterated learning account of the emergence of systematic structure in a non-linguistic task. In Proc. 35th Annual Conf. Cognitive Science Soc. (eds Knauff, M. et al. ) 340–345 (Cognitive Science Society, 2013).

    Google Scholar 

  22. London, J. Hearing in Time: Psychological Aspects of Musical Meter (Oxford Univ. Press, 2012).

    Book  Google Scholar 

  23. Ravignani, A. Visualizing and interpreting rhythmic patterns using phase space plots. Music Percept. (in the press).

  24. Celma-Miralles, A., de Menezes, R. F. & Toro, J. M. Look at the beat, feel the meter: top-down effects of meter induction on auditory and visual modalities. Front. Hum. Neurosci. 10, 108 (2016).

    Article  Google Scholar 

  25. Jaccard, P. The distribution of the flora in the alpine zone. New Phytol. 11, 37–50 (1912).

    Article  Google Scholar 

  26. Iversen, J. R. in The Cambridge Companion to Percussion (ed. Hartenberger, R. ) Ch. 21, 267–280 (Cambridge Univ. Press, 2016).

    Google Scholar 

  27. Laland, K., Wilkins, C. & Clayton, N. The evolution of dance. Curr. Biol. 26, R5–R9 (2016).

    CAS  Article  Google Scholar 

  28. Ravignani, A. & Cook, P. The evolutionary biology of dance without frills. Curr. Biol. 26, R878–R879 (2016).

    CAS  Article  Google Scholar 

  29. Desain, P. & Honing, H. The formation of rhythmic categories and metric priming. Perception 32, 341–365 (2002).

    Article  Google Scholar 

  30. Repp, B. H., London, J. & Keller, P. E. Systematic distortions in musicians: reproduction of cyclic three-interval rhythms. Music Percept. 30, 291–305 (2013).

    Article  Google Scholar 

  31. Smith, K. & Wonnacott, E. Eliminating unpredictable variation through iterated learning. Cognition 116, 444–449 (2010).

    Article  Google Scholar 

  32. Kalish, M. L., Griffiths, T. L. & Lewandowsky, S. Iterated learning: intergenerational knowledge transmission reveals inductive biases. Psychon. Bull. Rev. 14, 288–294 (2007).

    Article  Google Scholar 

  33. Verhoef, T. The origins of duality of patterning in artificial whistled languages. Lang. Cogn. 4, 357–380 (2012).

    Article  Google Scholar 

  34. Garrod, S., Fay, N., Rogers, S., Walker, B. & Swoboda, N. Can iterated learning explain the emergence of graphical symbols? Interact. Stud. 11, 33–50 (2010).

    Article  Google Scholar 

  35. Kempe, V., Gauvrit, N. & Forsyth, D. Structure emerges faster during cultural transmission in children than in adults. Cognition 136, 247–254 (2015).

    Article  Google Scholar 

  36. Silvey, C., Kirby, S. & Smith, K. Word meanings evolve to selectively preserve distinctions on salient dimensions. Cogn. Sci. 39, 212–226 (2015).

    Article  Google Scholar 

  37. Parncutt, R. A perceptual model of pulse salience and metrical accent in musical rhythms. Music Percept. 11, 409–464 (1994).

    Article  Google Scholar 

  38. Boon, J. P. & Decroly, O. Dynamical systems theory for music dynamics. Chaos 5, 501–508 (1995).

    Article  Google Scholar 

  39. Caldwell, C. A. & Millen, A. E. Studying cumulative cultural evolution in the laboratory. Phil. Trans. R. Soc. B 363, 3529–3539 (2008).

    Article  Google Scholar 

  40. Clayton, M. R. Observing entrainment in music performance: video-based observational analysis of Indian musicians’ tanpura playing and beat marking. Music. Sci. 11, 27–59 (2007).

    Article  Google Scholar 

  41. Jamieson, R. K. & Mewhort, D. Applying an exemplar model to the artificial-grammar task: inferring grammaticality from similarity. Q. J. Exp. Psychol. 62, 550–575 (2009).

    Article  Google Scholar 

  42. Kirby, S., Griffiths, T. & Smith, K. Iterated learning and the evolution of language. Curr. Opin. Neurobiol. 28, 108–114 (2014).

    CAS  Article  Google Scholar 

  43. Levenshtein, V. I. Binary codes capable of correcting deletions, insertions, and reversals. Sov. Physi. Doklady 10, 707–710 (1966).

    Google Scholar 

  44. Matthews, C., Roberts, G. & Caldwell, C. A. Opportunity to assimilate and pressure to discriminate can generate cultural divergence in the laboratory. Evol. Hum. Behav. 33, 759–770 (2012).

    Article  Google Scholar 

  45. Ravignani, A. & Sonnweber, R. Measuring teaching through hormones and time series analysis: towards a comparative framework. Behav. Brain Sci. 38, 40–41 (2015).

    Article  Google Scholar 

  46. Jadoul, Y., Ravignani, A., Thompson, B., Filippi, P., & de Boer, B. Seeking temporal predictability in speech: comparing statistical approaches on 18 world languages. Front. Hum. Neurosci. 10, 586 (2016).

  47. Thorndike, R. L. Who belongs in the family? Psychometrika 18, 267–276 (1953).

    Article  Google Scholar 

  48. Longuet-Higgins, H. C. & Lee, C. S. The perception of musical rhythms. Perception 11, 115–128 (1982).

    CAS  Article  Google Scholar 

  49. Longuet-Higgins, H. C. & Lee, C. S. The rhythmic interpretation of monophonic music. Music Percept. 1, 424–441 (1984).

    Article  Google Scholar 

Download references

Acknowledgements

A.R. was supported by Fonds Wetenschappelijk Onderzoek Vlaanderen grant no. V439315N, and European Research Council (ERC) grant (283435 ABACUS, to B. de Boer). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. We thank P. Filippi, B. Thompson, B. de Boer, H. Little, S. van der Ham, N. Chr. Hansen, J. Iversen, D. Bowling, T. Grossi, A.C. Miralles, P. Norton, V. Spinosa, Y.-H. Su, P. Tinits and K. Smith, as well as all members of the Centre for Language Evolution (Edinburgh), AI-Lab (VUB Brussels), Biolinguistics (Barcelona) and attendants of Evolang XI, IBAC XXV, Statistical Learning 2015 and the DZG Graduate Meeting 2016 for their comments and advice.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and S.K. conceived the study. A.R., T.D. and S.K. designed research. T.D. performed the research. A.R. and S.K. wrote the Python scripts for the data analysis and experimental testing. A.R., T.D. and S.K. analysed the data and wrote the paper.

Corresponding author

Correspondence to Andrea Ravignani.

Ethics declarations

Competing interests

The authors declare no competing interests.

Supplementary information

Supplementary information

Supplementary Figure 1, Supplementary Tables 1-3, Supplementary Notes, Supplementary Methods (PDF 267 kb)

Raw data

The patterns heard and produced by each participant are organized and sorted by number of experimental chain, number of drumming pattern, and participant number (equivalent to generation number) within an experimental transmission chain. (CSV 386 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ravignani, A., Delgado, T. & Kirby, S. Musical evolution in the lab exhibits rhythmic universals. Nat Hum Behav 1, 0007 (2017). https://doi.org/10.1038/s41562-016-0007

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41562-016-0007

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing