Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High Mountain Asia hydropower systems threatened by climate-driven landscape instability

Abstract

Global warming-induced melting and thawing of the cryosphere are severely altering the volume and timing of water supplied from High Mountain Asia, adversely affecting downstream food and energy systems that are relied on by billions of people. The construction of more reservoirs designed to regulate streamflow and produce hydropower is a critical part of strategies for adapting to these changes. However, these projects are vulnerable to a complex set of interacting processes that are destabilizing landscapes throughout the region. Ranging in severity and the pace of change, these processes include glacial retreat and detachments, permafrost thaw and associated landslides, rock–ice avalanches, debris flows and outburst floods from glacial lakes and landslide-dammed lakes. The result is large amounts of sediment being mobilized that can fill up reservoirs, cause dam failure and degrade power turbines. Here we recommend forward-looking design and maintenance measures and sustainable sediment management solutions that can help transition towards climate change-resilient dams and reservoirs in High Mountain Asia, in large part based on improved monitoring and prediction of compound and cascading hazards.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: GLOFs, HPPs, and erosion rates in HMA.
Fig. 2: Field photos, outburst flood discharges and destruction of HPPs caused by three types of hazard chain.
Fig. 3: Melting of glaciers and thawing of permafrost in a warming HMA.
Fig. 4: LLOFs, GLOFs and changing sediment fluxes in a rapidly warming HMA associated with glacier retreat.

Data availability

The data shown in the figures are available in the publications cited and at https://github.com/geolidf/HMA-hydropower. Air-temperature data are sourced from the China Meteorological Administration. Satellite images are available from the ESA/EC Copernicus Sentinels Scientific Data Hub (Sentinel-2 data) and the United States Geological Survey (Landsat data). Glacier boundary is available at the Randolph Glacier Inventory (RGI 6.0; https://www.glims.org/RGI/rgi60_dl.html). Data on existing and planned HPPs are available at the Global Dam Watch (http://globaldamwatch.org/fhred/; http://globaldamwatch.org/grand/). Data on hydropower potential and developed hydropower are available from the International Hydropower Association (IHA; https://www.hydropower.org/status-report).

Code availability

The code used to produce Figs. 3 and 4 is available from the corresponding author on request.

References

  1. Immerzeel, W. W. et al. Importance and vulnerability of the world’s water towers. Nature 577, 364–369 (2020).

    Google Scholar 

  2. Viviroli, D., Kummu, M., Meybeck, M., Kallio, M. & Wada, Y. Increasing dependence of lowland populations on mountain water resources. Nat. Sustain. 3, 917–928 (2020).

    Google Scholar 

  3. Pepin, N. et al. Elevation-dependent warming in mountain regions of the world. Nat. Clim. Change 5, 424–430 (2015).

    Google Scholar 

  4. Yao, T. et al. Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. Bull. Am. Meteorol. Soc. 100, 423–444 (2019).

    Google Scholar 

  5. Hock, R. et al. in Special Report on the Ocean and Cryosphere in a Changing Climate (eds Pörtner, H. O. et al.) Ch. 2 (IPCC, 2019).

  6. Bolch, T. et al. in The Hindu Kush Himalaya Assessment (eds Wester, P. et al.) 209–255 (Springer, 2019); https://doi.org/10.1007/978-3-319-92288-1_7

  7. Rounce, D. R., Hock, R. & Shean, D. E. Glacier mass change in High Mountain Asia through 2100 using the open-source Python Glacier Evolution Model (PyGEM). Front. Earth Sci. 7, 331 (2020).

    Google Scholar 

  8. Huss, M. & Hock, R. Global-scale hydrological response to future glacier mass loss. Nat. Clim. Change 8, 135–140 (2018).

    Google Scholar 

  9. Li, D. et al. Exceptional increases in fluvial sediment fluxes in a warmer and wetter High Mountain Asia. Science 374, 599–603 (2021).

    Google Scholar 

  10. Pritchard, H. D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 569, 649–654 (2019).

    Google Scholar 

  11. Nie, Y. et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nat. Rev. Earth Environ. 2, 91–106 (2021).

    Google Scholar 

  12. Kraaijenbrink, P. D. A., Stigter, E. E., Yao, T. & Immerzeel, W. W. Climate change decisive for Asia’s snow meltwater supply. Nat. Clim. Change 11, 591–597 (2021).

    Google Scholar 

  13. Farinotti, D., Round, V., Huss, M., Compagno, L. & Zekollari, H. Large hydropower and water-storage potential in future glacier-free basins. Nature 575, 341–344 (2019).

    Google Scholar 

  14. Dhaubanjar, S. et al. A systematic framework for the assessment of sustainable hydropower potential in a river basin—the case of the upper Indus. Sci. Total Environ. 786, 147142 (2021).

    Google Scholar 

  15. Sorg, A., Bolch, T., Stoffel, M., Solomina, O. & Beniston, M. Climate change impacts on glaciers and runoff in Tien Shan (Central Asia). Nat. Clim. Change 2, 725–731 (2012).

    Google Scholar 

  16. Hussain, A. et al. Hydropower development in the Hindu Kush Himalayan region: issues, policies and opportunities. Renew. Sustain. Energy Rev. 107, 446–461 (2019).

    Google Scholar 

  17. Vaidya, R. A., Molden, D. J., Shrestha, A. B., Wagle, N. & Tortajada, C. The role of hydropower in South Asia’s energy future. Int. J. Water Resour. Dev. 37, 367–391 (2021).

    Google Scholar 

  18. Schwanghart, W., Worni, R., Huggel, C., Stoffel, M. & Korup, O. Uncertainty in the Himalayan energy–water nexus: estimating regional exposure to glacial lake outburst floods. Environ. Res. Lett. 11, 074005 (2016).

    Google Scholar 

  19. Schwanghart, W., Ryan, M. & Korup, O. Topographic and seismic constraints on the vulnerability of Himalayan hydropower. Geophys. Res. Lett. 45, 8985–8992 (2018).

    Google Scholar 

  20. Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L. & Tockner, K. A global boom in hydropower dam construction. Aquat. Sci. 77, 161–170 (2015).

    Google Scholar 

  21. Lehner, B. et al. High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front. Ecol. Environ. 9, 494–502 (2011).

    Google Scholar 

  22. Kondolf, G. M. et al. Sustainable sediment management in reservoirs and regulated rivers: experiences from five continents. Earths Future 2, 256–280 (2014).

    Google Scholar 

  23. Kääb, A. et al. Sudden large-volume detachments of low-angle mountain glaciers—more frequent than thought? Cryosphere 15, 1751–1785 (2021).

    Google Scholar 

  24. Shugar, D. H. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 373, 300–306 (2021).

    Google Scholar 

  25. Cook, K. L. et al. Detection and potential early warning of catastrophic flow events with regional seismic networks. Science 374, 87–92 (2021).

    Google Scholar 

  26. Sain, K. et al. A perspective on Rishiganga-Dhauliganga flash flood in the Nanda Devi Biosphere Reserve, Garhwal Himalaya, India. J. Geol. Soc. India 97, 335–338 (2021).

    Google Scholar 

  27. Gruber, S. et al. Review article: inferring permafrost and permafrost thaw in the mountains of the Hindu Kush Himalaya region. Cryosphere 11, 81–99 (2017).

    Google Scholar 

  28. Ding, Y. et al. Increasing cryospheric hazards in a warming climate. Earth Sci. Rev. 213, 103500 (2021).

    Google Scholar 

  29. Koppes, M. N. & Montgomery, D. R. The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales. Nat. Geosci. 2, 644–647 (2009).

    Google Scholar 

  30. Allen, S. K., Rastner, P., Arora, M., Huggel, C. & Stoffel, M. Lake outburst and debris flow disaster at Kedarnath, June 2013: hydrometeorological triggering and topographic predisposition. Landslides 13, 1479–1491 (2016).

    Google Scholar 

  31. Bhambri, R. et al. Devastation in the Kedarnath (Mandakini) Valley, Garhwal Himalaya, during 16–17 June 2013: a remote sensing and ground-based assessment. Nat. Hazards 80, 1801–1822 (2016).

    Google Scholar 

  32. Huss, M. et al. Toward mountains without permanent snow and ice. Earths Future 5, 418–435 (2017).

    Google Scholar 

  33. Evans, S. G., Delaney, K. B. & Rana, N. M. in Snow and Ice-Related Hazards, Risks, and Disasters 2nd edn (eds Haeberli, W. & Whiteman, C.) 541–596 (Elsevier, 2021); https://doi.org/10.1016/B978-0-12-817129-5.00004-4

  34. Hugonnet, R. et al. Accelerated global glacier mass loss in the early twenty-first century. Nature 592, 726–731 (2021).

    Google Scholar 

  35. Shean, D. E. et al. A systematic, regional assessment of High Mountain Asia glacier mass balance. Front. Earth Sci. 7, 363 (2020).

    Google Scholar 

  36. Brun, F., Berthier, E., Wagnon, P., Kääb, A. & Treichler, D. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016. Nat. Geosci. 10, 668–673 (2017).

    Google Scholar 

  37. Kraaijenbrink, P. D. A., Bierkens, M. F. P., Lutz, A. F. & Immerzeel, W. W. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers. Nature 549, 257–260 (2017).

    Google Scholar 

  38. Marzeion, B. et al. Partitioning the uncertainty of ensemble projections of global glacier mass change. Earths Future 8, e2019EF001470 (2020).

    Google Scholar 

  39. Biskaborn, B. K. et al. Permafrost is warming at a global scale. Nat. Commun. 10, 264 (2019).

    Google Scholar 

  40. Zhao, L. et al. A synthesis dataset of permafrost thermal state for the Qinghai–Tibet (Xizang) Plateau, China. Earth Syst. Sci. Data 13, 4207–4218 (2021).

    Google Scholar 

  41. Wang, T. et al. Permafrost thawing puts the frozen carbon at risk over the Tibetan Plateau. Sci. Adv. 6, eaaz3513 (2020).

    Google Scholar 

  42. Ni, J. et al. Simulation of the present and future projection of permafrost on the Qinghai–Tibet Plateau with statistical and machine learning models. J. Geophys. Res. Atmos. 126, e2020JD033402 (2021).

    Google Scholar 

  43. Allen, S. K., Cox, S. C. & Owens, I. F. Rock avalanches and other landslides in the central Southern Alps of New Zealand: a regional study considering possible climate change impacts. Landslides 8, 33–48 (2011).

    Google Scholar 

  44. Fischer, L., Purves, R. S., Huggel, C., Noetzli, J. & Haeberli, W. On the influence of topographic, geological and cryospheric factors on rock avalanches and rockfalls in high-mountain areas. Nat. Hazards Earth Syst. Sci. 12, 241–254 (2012).

    Google Scholar 

  45. Savi, S., Comiti, F. & Strecker, M. R. Pronounced increase in slope instability linked to global warming: a case study from the eastern European Alps. Earth Surf. Process. Landf. https://doi.org/10.1002/esp.5100 (2021).

  46. Gruber, S. & Haeberli, W. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J. Geophys. Res. Earth Surf. 112, F02S18 (2007).

    Google Scholar 

  47. Kääb, A. et al. Massive collapse of two glaciers in western Tibet in 2016 after surge-like instability. Nat. Geosci. 11, 114–120 (2018).

    Google Scholar 

  48. Church, M. & Ryder, J. M. Paraglacial sedimentation: a consideration of fluvial processes conditioned by glaciation. Geol. Soc. Am. Bull. 83, 3059–3072 (1972).

    Google Scholar 

  49. Church, M. & Slaymaker, O. Disequilibrium of Holocene sediment yield in glaciated British Columbia. Nature 337, 452 (1989).

    Google Scholar 

  50. Ballantyne, C. K. Paraglacial geomorphology. Quat. Sci. Rev. 21, 1935–2017 (2002).

    Google Scholar 

  51. Knight, J. & Harrison, S. Mountain glacial and paraglacial environments under global climate change: lessons from the past, future directions and policy implications. Geogr. Ann. Ser. A 96, 245–264 (2014).

    Google Scholar 

  52. Antoniazza, G. & Lane, S. N. Sediment yield over glacial cycles: a conceptual model. Prog. Phys. Geogr. Earth Environ. https://doi.org/10.1177/0309133321997292 (2021).

  53. Luo, J., Niu, F., Lin, Z., Liu, M. & Yin, G. Recent acceleration of thaw slumping in permafrost terrain of Qinghai–Tibet Plateau: an example from the Beiluhe Region. Geomorphology 341, 79–85 (2019).

    Google Scholar 

  54. Hanisch, J., Koirala, A. & Bhandary, N. P. The Pokhara May 5th flood disaster: a last warning sign sent by nature? J. Nepal Geol. Soc. 46, 1–10 (2013).

    Google Scholar 

  55. Fan, X. et al. The formation and impact of landslide dams—state of the art. Earth Sci. Rev. 203, 103116 (2020).

    Google Scholar 

  56. Kirschbaum, D., Kapnick, S. B., Stanley, T. & Pascale, S. Changes in extreme precipitation and landslides over High Mountain Asia. Geophys. Res. Lett. 47, e2019GL085347 (2020).

    Google Scholar 

  57. Yu, G. A., Yao, W., Huang, H. Q. & Liu, Z. Debris flows originating in the mountain cryosphere under a changing climate: a review. Prog. Phys. Geogr. 45, 339–374 (2020).

    Google Scholar 

  58. Walter, F. et al. Direct observations of a three million cubic meter rock-slope collapse with almost immediate initiation of ensuing debris flows. Geomorphology 351, 106933 (2020).

    Google Scholar 

  59. Church, M. & Jakob, M. What is a debris flood? Water Resour. Res. 56, e2020WR027144 (2020).

    Google Scholar 

  60. Deng, M., Chen, N. & Liu, M. Meteorological factors driving glacial till variation and the associated periglacial debris flows in Tianmo Valley, south-eastern Tibetan Plateau. Nat. Hazards Earth Syst. Sci. 17, 345–356 (2017).

    Google Scholar 

  61. Carrivick, J. L. & Tweed, F. S. A global assessment of the societal impacts of glacier outburst floods. Glob. Planet. Change 144, 1–16 (2016).

    Google Scholar 

  62. Harrison, S. et al. Climate change and the global pattern of moraine-dammed glacial lake outburst floods. Cryosphere 12, 1195–1209 (2018).

    Google Scholar 

  63. Liu, W. et al. Outburst floods in China: a review. Earth Sci. Rev. 197, 102895 (2019).

    Google Scholar 

  64. Delaney, K. B. & Evans, S. G. The 2000 Yigong landslide (Tibetan Plateau), rockslide-dammed lake and outburst flood: review, remote sensing analysis, and process modelling. Geomorphology 246, 377–393 (2015).

    Google Scholar 

  65. Wasson, R. J. et al. A 1000-year history of large floods in the Upper Ganga catchment, central Himalaya, India. Quat. Sci. Rev. 77, 156–166 (2013).

    Google Scholar 

  66. Zhang, L., Xiao, T., He, J. & Chen, C. Erosion-based analysis of breaching of Baige landslide dams on the Jinsha River, China, in 2018. Landslides 16, 1965–1979 (2019).

    Google Scholar 

  67. Chen, C., Zhang, L., Xiao, T. & He, J. Barrier lake bursting and flood routing in the Yarlung Tsangpo Grand Canyon in October 2018. J. Hydrol. 583, 124603 (2020).

    Google Scholar 

  68. Shang, Y. et al. A super-large landslide in Tibet in 2000: background, occurrence, disaster, and origin. Geomorphology 54, 225–243 (2003).

    Google Scholar 

  69. Bazai, N. A. et al. Increasing glacial lake outburst flood hazard in response to surge glaciers in the Karakoram. Earth Sci. Rev. 212, 103432 (2021).

    Google Scholar 

  70. Zheng, G. et al. Increasing risk of glacial lake outburst floods from future Third Pole deglaciation. Nat. Clim. Change 11, 411–417 (2021).

    Google Scholar 

  71. Zheng, G. et al. Numerous unreported glacial lake outburst floods in the Third Pole revealed by high-resolution satellite data and geomorphological evidence. Sci. Bull. 66, 1270–1273 (2021).

    Google Scholar 

  72. Veh, G., Korup, O., von Specht, S., Roessner, S. & Walz, A. Unchanged frequency of moraine-dammed glacial lake outburst floods in the Himalaya. Nat. Clim. Change 9, 379–383 (2019).

    Google Scholar 

  73. Veh, G. et al. Trends, breaks, and biases in the frequency of reported glacier lake outburst floods. Earths Future 10, e2021EF002426 (2022).

    Google Scholar 

  74. Shugar, D. H. et al. Rapid worldwide growth of glacial lakes since 1990. Nat. Clim. Change 10, 939–945 (2020).

    Google Scholar 

  75. Nie, Y. et al. An inventory of historical glacial lake outburst floods in the Himalayas based on remote sensing observations and geomorphological analysis. Geomorphology 308, 91–106 (2018).

    Google Scholar 

  76. Richardson, S. D. & Reynolds, J. M. An overview of glacial hazards in the Himalayas. Quat. Int. 65, 31–47 (2000).

    Google Scholar 

  77. Cook, K. L., Andermann, C., Gimbert, F., Adhikari, B. R. & Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 362, 53–57 (2018).

    Google Scholar 

  78. Liu, M., Chen, N., Zhang, Y. & Deng, M. Glacial lake inventory and lake outburst flood/debris flow hazard assessment after the Gorkha earthquake in the Bhote Koshi Basin. Water 12, 464 (2020).

    Google Scholar 

  79. King, O., Bhattacharya, A., Bhambri, R. & Bolch, T. Glacial lakes exacerbate Himalayan glacier mass loss. Sci. Rep. 9, 18145 (2019).

    Google Scholar 

  80. Chen, F. et al. Annual 30 m dataset for glacial lakes in High Mountain Asia from 2008 to 2017. Earth Syst. Sci. Data 13, 741–766 (2021).

    Google Scholar 

  81. Nie, Y. et al. A regional-scale assessment of Himalayan glacial lake changes using satellite observations from 1990 to 2015. Remote Sens. Environ. 189, 1–13 (2017).

    Google Scholar 

  82. Yin, B., Zeng, J., Zhang, Y., Huai, B. & Wang, Y. Recent Kyagar glacier lake outburst flood frequency in Chinese Karakoram unprecedented over the last two centuries. Nat. Hazards 95, 877–881 (2019).

    Google Scholar 

  83. Shangguan, D. et al. Quick release of internal water storage in a glacier leads to underestimation of the hazard potential of glacial lake outburst floods from Lake Merzbacher in central Tian Shan Mountains. Geophys. Res. Lett. 44, 9786–9795 (2017).

    Google Scholar 

  84. Medeu, A. R. et al. Moraine-dammed glacial lakes and threat of glacial debris flows in South-East Kazakhstan. Earth Sci. Rev. https://doi.org/10.1016/j.earscirev.2022.103999 (2022).

  85. Stuart-Smith, R. F., Roe, G. H., Li, S. & Allen, M. R. Increased outburst flood hazard from Lake Palcacocha due to human-induced glacier retreat. Nat. Geosci. 14, 85–90 (2021).

    Google Scholar 

  86. Sattar, A. et al. Future glacial lake outburst flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology 388, 107783 (2021).

    Google Scholar 

  87. Gao, Y. et al. Glacier-related hazards along the International Karakoram Highway: status and future perspectives. Front. Earth Sci. 9, 611501 (2021).

    Google Scholar 

  88. Wijngaard, R. R. et al. Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra river basins. PLoS ONE 12, e0190224 (2017).

    Google Scholar 

  89. Li, D., Overeem, I., Kettner, A. J., Zhou, Y. & Lu, X. Air temperature regulates erodible landscape, water, and sediment fluxes in the permafrost-dominated catchment on the Tibetan Plateau. Water Resour. Res. 57, e2020WR028193 (2021).

    Google Scholar 

  90. Zhang, T., Li, D., Kettner, A. J., Zhou, Y. & Lu, X. Constraining dynamic sediment–discharge relationships in cold environments: the Sediment-Availability-Transport (SAT) Model. Water Resour. Res. 57, e2021WR030690 (2021).

    Google Scholar 

  91. East, A. E. & Sankey, J. B. Geomorphic and sedimentary effects of modern climate change: current and anticipated future conditions in the western United States. Rev. Geophys. 58, e2019RG000692 (2020).

    Google Scholar 

  92. Shi, X. et al. The response of the suspended sediment load of the headwaters of the Brahmaputra River to climate change: quantitative attribution to the effects of hydrological, cryospheric and vegetation controls. Glob. Planet. Change 210, 103753 (2022).

    Google Scholar 

  93. Sinha, R. et al. Basin-scale hydrology and sediment dynamics of the Kosi River in the Himalayan foreland. J. Hydrol. 570, 156–166 (2019).

    Google Scholar 

  94. Dehecq, A. et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia. Nat. Geosci. 12, 22–27 (2019).

    Google Scholar 

  95. Herman, F., De Doncker, F., Delaney, I., Prasicek, G. & Koppes, M. The impact of glaciers on mountain erosion. Nat. Rev. Earth Environ. 2, 422–435 (2021).

    Google Scholar 

  96. Koppes, M. et al. Observed latitudinal variations in erosion as a function of glacier dynamics. Nature 526, 100–103 (2015).

    Google Scholar 

  97. Delaney, I. & Adhikari, S. Increased subglacial sediment discharge in a warming climate: consideration of ice dynamics, glacial erosion, and fluvial sediment transport. Geophys. Res. Lett. 47, e2019GL085672 (2020).

    Google Scholar 

  98. Lane, S. N. & Nienow, P. W. Decadal‐scale climate forcing of Alpine glacial hydrological systems. Water Resour. Res. 55, 2478–2492 (2019).

    Google Scholar 

  99. Carrivick, J. L. & Tweed, F. S. Deglaciation controls on sediment yield: towards capturing spatio-temporal variability. Earth Sci. Rev. 221, 103809 (2021).

    Google Scholar 

  100. Larsen, I. J. & Montgomery, D. R. Landslide erosion coupled to tectonics and river incision. Nat. Geosci. 5, 468–473 (2012).

    Google Scholar 

  101. Li, D., Lu, X. X., Yang, X., Chen, L. & Lin, L. Sediment load responses to climate variation and cascade reservoirs in the Yangtze River: a case study of the Jinsha River. Geomorphology 322, 41–52 (2018).

    Google Scholar 

  102. Annandale, G. W., Morris, G. L. & Karki, P. Extending the Life of Reservoirs: Sustainable Sediment Management for Dams and Run-of-River Hydropower (World Bank, 2016).

  103. Turowski, J. M., Rickenmann, D. & Dadson, S. J. The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology 57, 1126–1146 (2010).

    Google Scholar 

  104. Best, J. Anthropogenic stresses on the world’s big rivers. Nat. Geosci. 12, 7–21 (2019).

    Google Scholar 

  105. Walling, D. E. Human impact on land–ocean sediment transfer by the world’s rivers. Geomorphology 79, 192–216 (2006).

    Google Scholar 

  106. Kirschbaum, D. et al. The state of remote sensing capabilities of cascading hazards over High Mountain Asia. Front. Earth Sci. 7, 197 (2019).

    Google Scholar 

  107. Huggel, C. et al. Glacier Lake 513, Peru: lessons for early warning service development. WMO Bull. 69, 45–52 (2020).

    Google Scholar 

  108. Farinotti, D. et al. A consensus estimate for the ice thickness distribution of all glaciers on Earth. Nat. Geosci. 12, 168–173 (2019).

    Google Scholar 

  109. Miles, E. et al. Health and sustainability of glaciers in High Mountain Asia. Nat. Commun. 12, 2868 (2021).

    Google Scholar 

  110. Bhattacharya, A. et al. High Mountain Asian glacier response to climate revealed by multi-temporal satellite observations since the 1960s. Nat. Commun. 12, 4133 (2021).

    Google Scholar 

  111. Benn, D. I. et al. Response of debris-covered glaciers in the Mount Everest region to recent warming, and implications for outburst flood hazards. Earth Sci. Rev. 114, 156–174 (2012).

    Google Scholar 

  112. Furian, W., Maussion, F. & Schneider, C. Projected 21st-century glacial lake evolution in High Mountain Asia. Front. Earth Sci. 10, 821798 (2022).

    Google Scholar 

  113. Hu, K. et al. Landslides and dammed lakes triggered by the 2017 Ms6.9 Milin earthquake in the Tsangpo gorge. Landslides 16, 993–1001 (2019).

    Google Scholar 

  114. Kargel, J. S. et al. Geomorphic and geologic controls of geohazards induced by Nepal’s 2015 Gorkha earthquake. Science 351, aac8353 (2016).

    Google Scholar 

  115. Mergili, M., Fischer, J.-T., Krenn, J. & Pudasaini, S. P. r.avaflow v1, an advanced open-source computational framework for the propagation and interaction of two-phase mass flows. Geosci. Model Dev. 10, 553–569 (2017).

    Google Scholar 

  116. Pfeffer, W. T. et al. The Randolph Glacier Inventory: a globally complete inventory of glaciers. J. Glaciol. 60, 537–552 (2014).

    Google Scholar 

  117. Ran, Y. et al. New high-resolution estimates of the permafrost thermal state and hydrothermal conditions over the Northern Hemisphere. Earth Syst. Sci. Data 14, 865–884 (2022).

    Google Scholar 

  118. Syvitski, J. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 3, 179–196 (2022).

    Google Scholar 

  119. Yao, T. et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat. Clim. Change 2, 663–667 (2012).

    Google Scholar 

  120. Severskiy, I. et al. Changes in glaciation of the Balkhash–Alakol basin, central Asia, over recent decades. Ann. Glaciol. 57, 382–394 (2016).

    Google Scholar 

  121. Hydropower Status Report 2021 (IHA, 2021); https://www.hydropower.org/publications/2021-hydropower-status-report

Download references

Acknowledgements

This work was supported by Singapore MOE (R-109-000-273-112 and R-109-000-227-115; X.L., D.L.), Cuomo Foundation and IPCC Scholarship Award (D.L.), Swiss National Science Foundation (IZLCZ2_169979/1; T.B.), European Research Council under the European Union’s Horizon 2020 programme (676819; W.W.I., J.F.S.), Netherlands Organisation for Scientific Research (NWO) under the research programme VIDI (016.161.308; W.W.I., J.F.S.), NSFC (42171086; Y.N.), Natural Sciences and Engineering Research Council (NSERC) of Canada (04207-2020; D.H.S.) and Water and Air theme of ICIMOD (S.N., J.F.S.). We thank I. Overeem, A. Kettner, J. Syvitski and IAG DENUCHANGE working group for discussions on erosion and sediment fluxes. The views and interpretations in this publication are those of the authors and are not necessarily attributable to their organizations.

Author information

Authors and Affiliations

Authors

Contributions

D.L. and X.L. conceived the study. D.L. wrote the original draft. X.L., D.E.W., T.B., T.Z., R.J.W. and S.H. edited the initial version and contributed ideas. D.L. and T.Z. designed the figures and the Box. J.F.S. contributed to Fig. 4a,b. S.N. contributed to the Box. Y.N. and A.Y. contributed data on GLOFs. X.S. contributed to Supplementary Figs. 13. All authors contributed to ideas and edits of subsequent revisions.

Corresponding author

Correspondence to Dongfeng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Mette Bendixen, Yongkang Xue and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor: James Super, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1 and 2 and Figs. 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, D., Lu, X., Walling, D.E. et al. High Mountain Asia hydropower systems threatened by climate-driven landscape instability. Nat. Geosci. 15, 520–530 (2022). https://doi.org/10.1038/s41561-022-00953-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00953-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing