Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intrusions induce global warming before continental flood basalt volcanism

Abstract

Extinction events are known to correlate with continental flood basalt eruptions. Massive carbon degassing from these eruptions can have catastrophic impacts on the global climate and biospheres. However, high-precision geochronology from the Deccan Traps and the Columbia River Basalt Group suggests that the onset of global warming precedes the main phase of flood basalt eruptions by several hundred thousand years. Here we construct a numerical model of sill intrusion to investigate this lag between warming and eruptions. The model determines the depth of sill intrusion depending on the evolving crustal density and temperature structures. Main-phase eruptions occur when the average density above the sill intrusion is greater than the magma density. When combined with a carbon-cycle simulation, the models can reproduce the observed timing and amplitude of the global warming events associated with the Deccan Traps and the Columbia River Basalt Group. We therefore conclude that major eruptions of continental flood basalts require densification of the crust by voluminous basaltic magma intrusions. The crystallization of such pre-eruption intrusions could release enough carbon dioxide to drive substantial global warming before the main phase of flood basalt volcanism.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Global temperature variations within 1,000 kyr of the approximate onset of the main volcanic phases of the Deccan Traps6,7 and CRBG10 LIPs.
Fig. 2: Relationships between seismic velocities, densities and pressures in typical continental crust and the crust under part of the Deccan Traps LIP.
Fig. 3: One-dimensional (1D) thermomechanical model results showing the changes in crustal temperatures and densities due to evolving sill intrusions.
Fig. 4: Time series of modelled global temperature variations and onsets of the main-phase eruptions of Deccan Traps and CRBG.

Data availability

For Fig. 1a, the global temperature data are from ref. 3 (https://doi.org/10.1126/science.aay5055) and the Deccan Trap extrusive flux data are from Schoene et al.50 (https://doi.org/10.5194/gchron-3-181-2021). For Fig. 2b, the global temperature data are from ref. 11 (https://doi.org/10.1126/science.aba6853) and the CRBG extrusive flux data are from ref. 10 (https://doi.org/10.1126/sciadv.aat8223). For Fig. 2, seismic velocity data are converted from data in ref. 13 (http://ischolar.info/index.php/JGSI/article/view/81438) and ref. 41 (https://doi.org/10.1029/95JB00259). These data, along with the plotting scripts to generate Figs. 1 and 2 are deposited at https://doi.org/10.5281/zenodo.6390698.

Code availability

Model input parameters, output data and the plotting scripts to generate Figs. 3 and 4 are deposited at https://doi.org/10.5281/zenodo.6390698. The sill intrusion code is available from the corresponding author upon request.

References

  1. Coffin, M. F. & Eldholm, O. Large igneous provinces: crustal structure, dimensions, and external consequences. Rev. Geophys. 32, 1–36 (1994).

    Google Scholar 

  2. Black, B. A. & Gibson, S. A. Deep carbon and the life cycle of large igneous provinces. Elements 15, 319–324 (2019).

    Google Scholar 

  3. Hull, P. M. et al. On impact and volcanism across the Cretaceous–Paleogene boundary. Science 367, 266–272 (2020).

    Google Scholar 

  4. Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).

    Google Scholar 

  5. Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (eds Ernst, R. E., Dickson, A. J. & Bekker, A.) 27–82 (AGU, 2021).

  6. Sprain, C. J. et al. The eruptive tempo of Deccan volcanism in relation to the Cretaceous–Paleogene boundary. Science 363, 866–870 (2019).

    Google Scholar 

  7. Schoene, B. et al. U–Pb constraints on pulsed eruption of the Deccan Traps across the end-Cretaceous mass extinction. Science 363, 862–866 (2019).

    Google Scholar 

  8. Richards, M. A. et al. Triggering of the largest Deccan eruptions by the Chicxulub impact. Geol. Soc. Am. Bull. 127, 1507–1520 (2015).

    Google Scholar 

  9. Holbourn, A., Kuhnt, W., Kochhann, K. G. D., Andersen, N. & Sebastian Meier, K. J. Global perturbation of the carbon cycle at the onset of the Miocene Climatic Optimum. Geology 43, 123–126 (2015).

    Google Scholar 

  10. Kasbohm, J. & Schoene, B. Rapid eruption of the Columbia River flood basalt and correlation with the mid-Miocene climate optimum. Sci. Adv. 4, eaat8223 (2018).

    Google Scholar 

  11. Westerhold, T. et al. An astronomically dated record of Earth’s climate and its predictability over the last 66 million years. Science 369, 1383–1387 (2020).

    Google Scholar 

  12. Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    Google Scholar 

  13. Pandey, O. P. Deccan Trap volcanic eruption affected the Archaean Dharwar craton of southern India: seismic evidences. J. Geol. Soc. India 72, 510–514 (2008).

    Google Scholar 

  14. Kumar, P., Tewari, H. C. & Khandekar, G. An anomalous high-velocity layer at shallow crustal depths in the Narmada zone, India. Geophys. J. Int. 142, 95–107 (2000).

    Google Scholar 

  15. Ravi Kumar, M. & Mohan, G. Mantle discontinuities beneath the Deccan volcanic province. Earth Planet. Sci. Lett. 237, 252–263 (2005).

    Google Scholar 

  16. Bhattacharji, S., Sharma, R. & Chatterjee, N. Two- and three-dimensional gravity modeling along western continental margin and intraplate Narmada–Tapti rifts: its relevance to Deccan flood basalt volcanism. J. Earth Syst. Sci. 113, 771–784 (2004).

    Google Scholar 

  17. Kumar, S., Gupta, S., Kanna, N. & Sivaram, K. Crustal structure across the Deccan Volcanic Province and Eastern Dharwar craton in south Indian shield using receiver function modelling. Phys. Earth Planet. Inter. 306, 106543 (2020).

    Google Scholar 

  18. Rohilla, S., Kumar, M. R., Rao, N. P. & Satyanarayana, H. V. S. Shear‐wave velocity structure of the Koyna–Warna region, Western India, through modeling of P‐receiver functions. Bull. Seismol. Soc. Am. 108, 1314–1325 (2018).

    Google Scholar 

  19. Patro, P. K. & Sarma, S. V. S. Evidence for an extensive intrusive component of the Deccan Large Igneous Province in the Narmada Son Lineament region, India, from three dimensional magnetotelluric studies. Earth Planet. Sci. Lett. 451, 168–176 (2016).

    Google Scholar 

  20. Catchings, R. D. & Mooney, W. D. Crustal structure of the Columbia Plateau: evidence for continental rifting. J. Geophys. Res. Solid Earth 93, 459–474 (1988).

    Google Scholar 

  21. Gao, H., Humphreys, E. D., Yao, H. & van der Hilst, R. D. Crust and lithosphere structure of the northwestern US with ambient noise tomography: terrane accretion and Cascade arc development. Earth Planet. Sci. Lett. 304, 202–211 (2011).

    Google Scholar 

  22. Gao, H. Crustal seismic structure beneath the source area of the Columbia River flood basalt: bifurcation of the Moho driven by lithosphere delamination. Geophys. Res. Lett. 42, 9764–9771 (2015).

    Google Scholar 

  23. Liu, Y., Li, L., van Wijk, J., Li, A. & Fu, Y. V. Surface-wave tomography of the Emeishan large igneous province (China): magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction. Geology 49, 1032–1037 (2021).

    Google Scholar 

  24. Cherepanova, Y., Artemieva, I. M., Thybo, H. & Chemia, Z. Crustal structure of the Siberian craton and the West Siberian basin: an appraisal of existing seismic data. Tectonophysics 609, 154–183 (2013).

    Google Scholar 

  25. Ryberg, T. et al. Crustal structure of northwest Namibia: evidence for plume–rift–continent interaction. Geology 43, 739–742 (2015).

    Google Scholar 

  26. Cashman, K. V., Sparks, R. S. J. & Blundy, J. D. Vertically extensive and unstable magmatic systems: a unified view of igneous processes. Science 355, eaag3055 (2017).

    Google Scholar 

  27. Ernst, R. E., Liikane, D. A., Jowitt, S. M., Buchan, K. L. & Blanchard, J. A. A new plumbing system framework for mantle plume-related continental large igneous provinces and their mafic–ultramafic intrusions. J. Volcanol. Geotherm. Res. 384, 75–84 (2019).

    Google Scholar 

  28. Moore, N. E., Grunder, A. L. & Bohrson, W. A. The three-stage petrochemical evolution of the Steens Basalt (southeast Oregon, USA) compared to large igneous provinces and layered mafic intrusions. Geosphere 14, 2505–2532 (2018).

    Google Scholar 

  29. Rosenthal, A., Hauri, E. H. & Hirschmann, M. M. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet. Sci. Lett. 412, 77–87 (2015).

    Google Scholar 

  30. Svensen, H. et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature 429, 542–545 (2004).

    Google Scholar 

  31. Huang, H.-H. et al. The Yellowstone magmatic system from the mantle plume to the upper crust. Science 348, 773–776 (2015).

    Google Scholar 

  32. Lee, H. et al. Massive and prolonged deep carbon emissions associated with continental rifting. Nat. Geosci. 9, 145–149 (2016).

    Google Scholar 

  33. Capriolo, M. et al. Deep CO2 in the end-Triassic Central Atlantic Magmatic Province. Nat. Commun. 11, 1670 (2020).

    Google Scholar 

  34. Hernandez Nava, A. et al. Reconciling early Deccan Traps CO2 outgassing and pre-KPB global climate. Proc. Natl Acad. Sci. USA 118, e2007797118 (2021).

    Google Scholar 

  35. Mutch, E. J. F., Maclennan, J., Holland, T. J. B. & Buisman, I. Millennial storage of near-Moho magma. Science 365, 260–264 (2019).

    Google Scholar 

  36. Karlstrom, L. & Richards, M. On the evolution of large ultramafic magma chambers and timescales for flood basalt eruptions. J. Geophys. Res. Solid Earth 116, B08216 (2011).

    Google Scholar 

  37. Black, B. A. & Manga, M. Volatiles and the tempo of flood basalt magmatism. Earth Planet. Sci. Lett. 458, 130–140 (2017).

    Google Scholar 

  38. Ridley, V. A. & Richards, M. A. Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts. Geochem. Geophys. Geosyst. 11, Q09006 (2010).

    Google Scholar 

  39. Hooft, E. E. & Detrick, R. S. The role of density in the accumulation of basaltic melts at mid-ocean ridges. Geophys. Res. Lett. 20, 423–426 (1993).

    Google Scholar 

  40. Buck, W. R., Carbotte, S. M. & Mutter, C. Controls on extrusion at mid-ocean ridges. Geology 25, 935–938 (1997).

    Google Scholar 

  41. Christensen, N. I. & Mooney, W. D. Seismic velocity structure and composition of the continental crust: a global view. J. Geophys. Res. 100, 9761–9788 (1995).

    Google Scholar 

  42. Stolper, E. & Walker, D. Melt density and the average composition of basalt. Contrib. Mineral. Petrol. 74, 7–12 (1980).

    Google Scholar 

  43. White, R. S. & McKenzie, D. Mantle plumes and flood basalts. J. Geophys. Res. Solid Earth 100, 17543–17585 (1995).

    Google Scholar 

  44. Annen, C., Blundy, J. D. & Sparks, R. S. J. The genesis of intermediate and silicic magmas in deep crustal hot zones. J. Petrol. 47, 505–539 (2006).

    Google Scholar 

  45. Zeebe, R. E., Zachos, J. C. & Dickens, G. R. Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming. Nat. Geosci. 2, 576–580 (2009).

    Google Scholar 

  46. Wignall, P. B. Large igneous provinces and mass extinctions. Earth Sci. Rev. 53, 1–33 (2001).

    Google Scholar 

  47. Armstrong McKay, D. I., Tyrrell, T., Wilson, P. A. & Foster, G. L. Estimating the impact of the cryptic degassing of large igneous provinces: a mid-Miocene case-study. Earth Planet. Sci. Lett. 403, 254–262 (2014).

    Google Scholar 

  48. Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).

    Google Scholar 

  49. Lange, R. A. Constraints on the preeruptive volatile concentrations in the Columbia River flood basalts. Geology 30, 179–182 (2002).

    Google Scholar 

  50. Schoene, B., Eddy, M. P., Keller, C. B. & Samperton, K. M. An evaluation of Deccan Traps eruption rates using geochronologic data. Geochronology 3, 181–198 (2021).

    Google Scholar 

  51. Brocher, T. M. Empirical relations between elastic wavespeeds and density in the Earth’s crust. Bull. Seismol. Soc. Am. 95, 2081–2092 (2005).

    Google Scholar 

  52. Zeebe, R. E. LOSCAR: Long-term Ocean–atmosphere–Sediment CArbon cycle Reservoir Model v2.0.4. Geosci. Model Dev. 5, 149–166 (2012).

    Google Scholar 

  53. Beane, J. E., Turner, C. A., Hooper, P. R., Subbarao, K. V. & Walsh, J. N. Stratigraphy, composition and form of the Deccan Basalts, Western Ghats, India. Bull. Volcanol. 48, 61–83 (1986).

    Google Scholar 

  54. Vanderkluysen, L., Mahoney, J. J., Hooper, P. R., Sheth, H. C. & Ray, R. The feeder system of the Deccan Traps (India): insights from dike geochemistry. J. Petrol. 52, 315–343 (2011).

    Google Scholar 

  55. Basu, A. R., Saha-Yannopoulos, A. & Chakrabarty, P. A precise geochemical volcano-stratigraphy of the Deccan traps. Lithos 376–377, 105754 (2020).

    Google Scholar 

  56. Yu, X., Lee, C. T. A., Chen, L. H. & Zeng, G. Magmatic recharge in continental flood basalts: insights from the Chifeng igneous province in Inner Mongolia. Geochem. Geophys. Geosyst. 16, 2082–2096 (2015).

    Google Scholar 

  57. Wolff, J. A., Ramos, F. C., Hart, G. L., Patterson, J. D. & Brandon, A. D. Columbia River flood basalts from a centralized crustal magmatic system. Nat. Geosci. 1, 177–180 (2008).

    Google Scholar 

  58. Reidel, S. P. & Barnett, D. B. Igneous rock associations 27. Chalcophile and platinum group elements in the Columbia River Basalt Group: a model for flood basalt lavas. Geosci. Can. 47, 187–214 (2020).

    Google Scholar 

  59. Solano, J. M. S., Jackson, M. D., Sparks, R. S. J., Blundy, J. D. & Annen, C. Melt segregation in deep crustal hot zones: a mechanism for chemical differentiation, crustal assimilation and the formation of evolved magmas. J. Petrol. 53, 1999–2026 (2012).

    Google Scholar 

  60. Chen, Y. & Morgan, W. J. A nonlinear rheology model for mid-ocean ridge axis topography. J. Geophys. Res. 95, 17583 (1990).

    Google Scholar 

  61. Behn, M. D. & Ito, G. Magmatic and tectonic extension at mid-ocean ridges: 1. Controls on fault characteristics. Geochem. Geophys. Geosyst. 9, Q08O10 (2008).

    Google Scholar 

  62. Kent, A. J. R. et al. Mantle heterogeneity during the formation of the North Atlantic Igneous Province: constraints from trace element and Sr–Nd–Os–O isotope systematics of Baffin Island picrites. Geochem. Geophys. Geosyst. 5, Q11004 (2004).

    Google Scholar 

  63. Sobolev, A. V., Krivolutskaya, N. A. & Kuzmin, D. V. Petrology of the parental melts and mantle sources of Siberian trap magmatism. Petrology 17, 253–286 (2009).

    Google Scholar 

  64. Hartley, M. E., Maclennan, J., Edmonds, M. & Thordarson, T. Reconstructing the deep CO2 degassing behaviour of large basaltic fissure eruptions. Earth Planet. Sci. Lett. 393, 120–131 (2014).

    Google Scholar 

  65. Henehan, M. J., Hull, P. M., Penman, D. E., Rae, J. W. B. & Schmidt, D. N. Biogeochemical significance of pelagic ecosystem function: an end-Cretaceous case study. Phil. Trans. R. Soc. B 371, 20150510 (2016).

    Google Scholar 

  66. Rubin, A. M. Getting granite dikes out of the source region. J. Geophys. Res. Solid Earth 100, 5911–5929 (1995).

    Google Scholar 

  67. Jellinek, A. M. & DePaolo, D. J. A model for the origin of large silicic magma chambers: precursors of caldera-forming eruptions. Bull. Volcanol. 65, 363–381 (2003).

    Google Scholar 

  68. Townsend, M., Huber, C., Degruyter, W. & Bachmann, O. Magma chamber growth during intercaldera periods: insights from thermo-mechanical modeling with applications to Laguna del Maule, Campi Flegrei, Santorini, and Aso. Geochem. Geophys. Geosyst. 20, 1574–1591 (2019).

    Google Scholar 

  69. Karakas, O., Degruyter, W., Bachmann, O. & Dufek, J. Lifetime and size of shallow magma bodies controlled by crustal-scale magmatism. Nat. Geosci. 10, 446–450 (2017).

    Google Scholar 

  70. Dufek, J. & Bergantz, G. W. Lower crustal magma genesis and preservation: a stochastic framework for the evaluation of basalt–crust interaction. J. Petrol. 46, 2167–2195 (2005).

    Google Scholar 

  71. Ryan, M. P. in Magmatmatic Processes: Physicochemical Principles (ed. Mysen, B. O.) 259–287 (The Geochemical Society, 1987).

  72. Menand, T. Physical controls and depth of emplacement of igneous bodies: a review. Tectonophysics 500, 11–19 (2011).

    Google Scholar 

  73. Rohrman, M. Intrusive large igneous provinces below sedimentary basins: an example from the Exmouth Plateau (NW Australia). J. Geophys. Res. Solid Earth 118, 4477–4487 (2013).

    Google Scholar 

  74. Magee, C. et al. Lateral magma flow in mafic sill complexes. Geosphere 12, 809–841 (2016).

    Google Scholar 

  75. Menand, T. The mechanics and dynamics of sills in layered elastic rocks and their implications for the growth of laccoliths and other igneous complexes. Earth Planet. Sci. Lett. 267, 93–99 (2008).

    Google Scholar 

  76. Sili, G., Urbani, S. & Acocella, V. What controls sill formation: an overview from analogue models. J. Geophys. Res. Solid Earth 124, 8205–8222 (2019).

    Google Scholar 

  77. Morgan, J. P. & Chen, Y. J. The genesis of oceanic crust: magma injection, hydrothermal circulation, and crustal flow. J. Geophys. Res. 98, 6283 (1993).

    Google Scholar 

  78. Gorczyk, W. & Vogt, K. Intrusion of magmatic bodies Into the continental crust: 3-D numerical models. Tectonics 37, 705–723 (2018).

    Google Scholar 

  79. Parsons, T., Sleep, N. H. & Thompson, G. A. Host rock rheology controls on the emplacement of tabular intrusions: implications for underplating of extending crust. Tectonics 11, 1348–1356 (1992).

    Google Scholar 

  80. Buck, W. R. The role of magma in the development of the Afro-Arabian Rift System. Geol. Soc. Lond. Spec. Publ. 259, 43–54 (2006).

    Google Scholar 

  81. Menand, T., Daniels, K. A. & Benghiat, P. Dyke propagation and sill formation in a compressive tectonic environment. J. Geophys. Res. 115, B08201 (2010).

    Google Scholar 

  82. Spence, D. A. & Turcotte, D. L. Magma-driven propagation of cracks. J. Geophys. Res. Solid Earth 90, 575–580 (1985).

    Google Scholar 

  83. Fialko, Y. A. & Rubin, A. M. Thermodynamics of lateral dike propagation: implications for crustal accretion at slow spreading mid-ocean ridges. J. Geophys. Res. Solid Earth 103, 2501–2514 (1998).

    Google Scholar 

  84. Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

  85. Lister, J. R. & Kerr, R. C. Fluid-mechanical models of crack propagation and their application to magma transport in dykes. J. Geophys. Res. 96, 10049 (1991).

    Google Scholar 

  86. Carslaw, H. S. & Jaeger, J. C. Conduction of Heat in Solids (Oxford Univ. Press, 1959).

  87. Wang, J. N., Hobbs, B. E., Ord, A., Shimamoto, T. & Toriumi, M. Newtonian dislocation creep in quartzites: implications for the rheology of the lower crust. Science 265, 1204–1206 (1994).

    Google Scholar 

  88. Hirth, G. & Kohlstedt, D. Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. Geophys. Monogr. Ser. 138, 83–105 (2003).

    Google Scholar 

  89. Spiegelman, M. & Katz, R. F. A semi-Lagrangian Crank–Nicolson algorithm for the numerical solution of advection–diffusion problems. Geochem. Geophys. Geosyst. 7, Q04014 (2006).

    Google Scholar 

  90. Britz, D., Østerby, O. & Strutwolf, J. Damping of Crank–Nicolson error oscillations. Comput. Biol. Chem. 27, 253–263 (2003).

    Google Scholar 

Download references

Acknowledgements

This work benefited from discussions with M. Spiegelman, E. Choi, J.-A. Olive, W. Ryan, E. Fischer and C. Sprain. We are also grateful for comments from J. Kasbohm, J. Blundy, M. Richards and T. Mittal on earlier versions of this work. We appreciate R. Zeebe for sharing the LOSCAR code. This work was supported by NSF grant OCE-1654745 to W.R.B.

Author information

Authors and Affiliations

Authors

Contributions

X.T., advised by W.R.B., conducted the model experiments and both authors wrote the manuscript.

Corresponding author

Correspondence to Xiaochuan Tian.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Geoscience thanks Jennifer Kasbohm, Jon Blundy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling editor: Rebecca Neely, in collaboration with the Nature Geoscience team.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Example of the steady-state analytic model results as functions of time relative to the Cretaceous-Paleogene (K/Pg) boundary.

a, Assumed Gaussian sill opening flux in terms of magma volume flux per unit area of the sill. b, Sill intrusion depth for the melt flux of (a) and the thermal energy balance of Eq. (6). c, Magma pressure head at the surface sourced from the intruding sill. Magma eruption is possible when this pressure equals to the critical pressure \(\Delta P_c\) at around K/Pg. For this case, magma flux from -400 kyrs to 0 kyrs is intruded. d, global averaged atmospheric CO2 concentration with time predicted by the LOSCAR climate model. e, global temperature change predicted by the LOSCAR model along with the extrusive flux with time to compare with the observation in Fig. 1a.

Extended Data Fig. 2 Schematic illustrations of how to determine the depth for a sill intrusion at maximum breakout pressure.

Magma overpressure (Pd), resistance pressure (Pr) and magma breakout pressure (PBK) for determining sill intrusion depth (Zin).

Supplementary information

Supplementary Information

Supplementary video description, discussion and Fig. 1.

Supplementary Video 1

Described in supplementary_information: Supplementary Information Video 1 (for Deccan Traps) | Video for modeled changes in global temperature, intrusion depth, crustal temperature, density and pressures due to evolving sill intrusions. Model time is shown on the upper left. A) Global temperature variations within 500 kyr of the approximate onset of the main volcanic phases of the Deccan Traps and Columbia River Basalt Group LIPs; Modeled temperature in green; Data in black. Red star indicates the onset of main-phase LIP eruptions. B) Sill intrusion depth and sill thickening rate with time. C) Crustal temperature changes due to sill intrusions. The blue and red dashed lines indicate magma solidus and liquidus respectively. D) Crustal density changes due to sill intrusions. Green line shows the extent and value of the average overburden density. Purple line shows the evolving crustal densities due to sill intrusions. The red dot (star at the onset of main-phase eruptions) indicates the sill intrusion depth and the magma density. The dashed grey line shows the initial crustal density profile. E) Changes in pressures due to sill intrusions. The dashed grey line is for the magma overpressure (driving pressure Pd). The green shading is for the resistance pressure Pr. The dashed red line is for the magma breakout pressure PBK. The solid red line is for the magma overpressure if sourced from the intruding sill. Red dots indicate depth of sill intrusions. (see also Extended Data Fig. 2).

Supplementary Video 2

Described in supplementary_information: Supplementary Information Video 2 (for CRBG) | Video for modeled changes in global temperature, intrusion depth, crustal temperature, density and pressures due to evolving sill intrusions. Model time is shown on the upper left. A) Global temperature variations within 500 kyr of the approximate onset of the main volcanic phases of the Deccan Traps and Columbia River Basalt Group LIPs; Modeled temperature in green; Data in black. Red star indicates the onset of main-phase LIP eruptions. B) Sill intrusion depth and sill thickening rate with time. C) Crustal temperature changes due to sill intrusions. The blue and red dashed lines indicate magma solidus and liquidus respectively. D) Crustal density changes due to sill intrusions. Green line shows the extent and value of the average overburden density. Purple line shows the evolving crustal densities due to sill intrusions. The red dot (star at the onset of main-phase eruptions) indicates the sill intrusion depth and the magma density. The dashed grey line shows the initial crustal density profile. E) Changes in pressures due to sill intrusions. The dashed grey line is for the magma overpressure (driving pressure Pd). The green shading is for the resistance pressure Pr. The dashed red line is for the magma breakout pressure PBK. The solid red line is for the magma overpressure if sourced from the intruding sill. Red dots indicate depth of sill intrusions. (see also Extended Data Fig. 2).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Buck, W.R. Intrusions induce global warming before continental flood basalt volcanism. Nat. Geosci. 15, 417–422 (2022). https://doi.org/10.1038/s41561-022-00939-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-022-00939-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing