Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Fire effects on the persistence of soil organic matter and long-term carbon storage

Abstract

One paradigm in biogeochemistry is that frequent disturbance tends to deplete carbon (C) in soil organic matter (SOM) by reducing biomass inputs and promoting losses. However, disturbance by fire has challenged this paradigm because soil C responses to frequent and/or intense fires are highly variable, despite observed declines in biomass inputs. Here, we review recent advances to illustrate that fire-driven changes in decomposition, mediated by altered SOM stability, are an important compensatory process offsetting declines in aboveground biomass pools. Fire alters the stability of SOM by affecting both the physicochemical properties of the SOM and the environmental drivers of decomposition, potentially offsetting C lost via combustion, but the mechanisms affecting the SOM stability differ across ecosystems. Thus, shifting our focus from a top-down view of fire impacting C cycling via changes in plant biomass to a bottom-up view of changes in decomposition may help to elucidate counterintuitive trends in the response of SOM to burning. Given that 70% of global topsoil C is in fire-prone regions, using fire to promote SOM stability may be an important nature-based climate solution to increase C storage.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Distribution of topsoil organic C and fire frequency across the globe.
Fig. 2: SOC stocks vulnerable to fire.
Fig. 3: The balance between changes in decomposition-based losses of SOM versus biomass-based inputs into SOM may influence fire effects on SOM stocks.
Fig. 4: Factors that influence SOM stability that may be influenced by fire.
Fig. 5: Stabilization dynamics differ across ecosystems and can inform fire management for nature-based climate solutions.

Data availability

All data are available from the databases cited in the text or as supplements online to the various meta-analyses.

Code availability

All analyses were conducted using standard code packages.

References

  1. Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).

    Google Scholar 

  2. Jackson, R. B. et al. The ecology of soil carbon: pools, vulnerabilities, and biotic and abiotic controls. Annu. Rev. Ecol. Evol. Syst. 48, 419–445 (2017).

    Google Scholar 

  3. Lal, R. Global potential of soil carbon sequestration to mitigate the greenhouse effect. CRC Crit. Rev. Plant Sci. 22, 151–184 (2003).

    Google Scholar 

  4. Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Chang. Biol. 4, 229–233 (1998).

    Google Scholar 

  5. Pellegrini, A. F. A. et al. Fire frequency drives decadal changes in soil carbon and nitrogen and ecosystem productivity. Nature 553, 194–198 (2018).

    Google Scholar 

  6. Grace, J. et al. Productivity and carbon fluxes of tropical savannas. J. Biogeogr. 33, 387–400 (2006).

    Google Scholar 

  7. Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572, 520–523 (2019).

    Google Scholar 

  8. Jones, M. W., Santín, C., van der Werf, G. R. & Doerr, S. H. Global fire emissions buffered by the production of pyrogenic carbon. Nat. Geosci. 12, 742–747 (2019).

    Google Scholar 

  9. Bodí, M. B. et al. Wildland fire ash: production, composition and eco-hydro-geomorphic effects. Earth Sci. Rev. 130, 103–127 (2014).

    Google Scholar 

  10. Certini, G., Nocentini, C., Knicker, H., Arfaioli, P. & Rumpel, C. Wildfire effects on soil organic matter quantity and quality in two fire-prone Mediterranean pine forests. Geoderma 167–168, 148–155 (2011).

    Google Scholar 

  11. Jiménez-Morillo, N. T. et al. Fire effects in the molecular structure of soil organic matter fractions under Quercus suber cover. Catena 145, 266–273 (2016).

    Google Scholar 

  12. Certini, G. Effects of fire on properties of forest soils: a review. Oecologia 143, 1–10 (2005).

    Google Scholar 

  13. Lehmann, J. et al. Australian climate–carbon cycle feedback reduced by soil black carbon. Nat. Geosci. 1, 832–835 (2008).

    Google Scholar 

  14. Santin, C. et al. Towards a global assessment of pyrogenic carbon from vegetation fires. Glob. Chang. Biol. 22, 76–91 (2016).

    Google Scholar 

  15. Czimczik, C. I. & Masiello, C. A. Controls on black carbon storage in soils. Global Biogeochem. Cycles https://doi.org/10.1029/2006GB002798 (2007).

  16. Bird, M. I., Wynn, J. G., Saiz, G., Wurster, C. M. & McBeath, A. The pyrogenic carbon cycle. Annu. Rev. Earth Planet. Sci. 43, 273–298 (2015).

    Google Scholar 

  17. Randerson, J. T., Chen, Y., van der Werf, G. R., Rogers, B. M. & Morton, D. C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2012JG002128 (2012).

  18. Archibald, S., Lehmann, C. E. R., Gómez-Dans, J. L. & Bradstock, R. A. Defining pyromes and global syndromes of fire regimes. Proc. Natl Acad. Sci. USA 110, 6442–6447 (2013).

    Google Scholar 

  19. Bond, W. J., Woodward, F. I. & Midgley, G. F. The global distribution of ecosystems in a world without fire. New Phytol. 165, 525–538 (2005).

    Google Scholar 

  20. Chuvieco, E. et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens. Environ. 225, 45–64 (2019).

    Google Scholar 

  21. Bowman, D. M. J. S. et al. Fire in the Earth system. Science 324, 481–484 (2009).

    Google Scholar 

  22. Bowman, D. M. J. S. et al. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 1, 500–515 (2020).

    Google Scholar 

  23. Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).

    Google Scholar 

  24. Nave, L. E., Vance, E. D., Swanston, C. W. & Curtis, P. S. Fire effects on temperate forest soil C and N storage. Ecol. Appl. 21, 1189–1201 (2011).

    Google Scholar 

  25. McKee, W. H. Changes in Soil Fertility Following Prescribed Burning on Coastal Plain Pine Sites Research Paper-RE-234 (US Department of Agriculture, 1982).

  26. Fynn, R. W. S., Haynes, R. J. & O’Connor, T. G. Burning causes long-term changes in soil organic matter content of a South African grassland. Soil Biol. Biochem. 35, 677–687 (2003).

    Google Scholar 

  27. Roscoe, R., Buurman, P., Velthorst, E. J. & Pereira, J. A. A. Effects of fire on soil organic matter in a “cerrado sensu-stricto” from southeast Brazil as revealed by changes in δ13C. Geoderma 95, 141–160 (2000).

    Google Scholar 

  28. Phillips, D. H., Foss, J. E., Buckner, E. R., Evans, R. M. & FitzPatrick, E. A. Response of surface horizons in an oak forest to prescribed burning. Soil Sci. Soc. Am. J. 64, 754–760 (2000).

    Google Scholar 

  29. Walker, X. J. et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Chang. 10, 1130–1136 (2020).

    Google Scholar 

  30. Hartford, R. & Frandsen, W. When it’s hot, it’s hot… or maybe it’s not! (Surface flaming may not portend extensive soil heating). Int. J. Wildland Fire 2, 139–144 (1992).

    Google Scholar 

  31. Pellegrini, A. F. A. et al. Frequent burning causes large losses of carbon from deep soil layers in a temperate savanna. J. Ecol. 108, 1426–1441 (2020).

    Google Scholar 

  32. Wardle, D. A., Hörnberg, G., Zackrisson, O., Kalela-Brundin, M. & Coomes, D. A. Long-term effects of wildfire on ecosystem properties across an island area gradient. Science 300, 972–975 (2003).

    Google Scholar 

  33. Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372, 280–283 (2021).

    Google Scholar 

  34. Pellegrini, A. F. A., Hoffmann, W. A. & Franco, A. C. Carbon accumulation and nitrogen pool recovery during transitions from savanna to forest in central Brazil. Ecology 95, 342–352 (2014).

    Google Scholar 

  35. Johnson, D. W. & Curtis, P. S. Effects of forest management on soil C and N storage: meta analysis. For. Ecol. Manage. 140, 227–238 (2001).

    Google Scholar 

  36. González-Pérez, J. A., González-Vila, F. J., Almendros, G. & Knicker, H. The effect of fire on soil organic matter—a review. Environ. Int. 30, 855–870 (2004).

    Google Scholar 

  37. Scharenbroch, B. C., Nix, B., Jacobs, K. A. & Bowles, M. L. Two decades of low-severity prescribed fire increases soil nutrient availability in a Midwestern, USA oak (Quercus) forest. Geoderma 183–184, 80–91 (2012).

    Google Scholar 

  38. Boyer, W. D. & Miller, J. H. Effect of burning and brush treatments on nutrient and soil physical properties in young longleaf pine stands. For. Ecol. Manage. 70, 311–318 (1994).

    Google Scholar 

  39. Martin, A., Mariotti, A., balesdent, J., Lavelle, P. & Vuattoux, R. Estimate of organic matter turnover rate in a savanna soil by 13C natural abundance measurements. Soil Biol. Biochem. 22, 517–523 (1990).

    Google Scholar 

  40. McKee, W. H. & Lewis, C. E. Influence of burning and grazing on soil nutrient properties and tree growth on a Georgia coastal plain site after 40 years. In Proc. Second Biennial Southern Silvicultural Research Station Conference (Ed. Jones, E. P. J.) 79–86 (US Department of Agriculture, 1983).

  41. Neill, C., Patterson, W. A. & Crary, D. W. Responses of soil carbon, nitrogen and cations to the frequency and seasonality of prescribed burning in a Cape Cod oak-pine forest. For. Ecol. Manage. 250, 234–243 (2007).

    Google Scholar 

  42. Russell-Smith, J., Whitehead, P. J., Cook, G. D. & Hoare, J. L. Response of Eucalyptus-dominated savanna to frequent fires: lessons from Munmarlary, 1973–1996. Ecol. Monogr. 73, 349–375 (2003).

    Google Scholar 

  43. Guinto, D. F., Xu, Z. H., House, A. P. N. & Saffigna, P. G. Soil chemical properties and forest floor nutrients under repeated prescribed-burning in eucalypt forests of south-east Queensland, Australia. N. Z. J. For. Sci. 31, 170–187 (2001).

    Google Scholar 

  44. Köster, K., Berninger, F., Lindén, A., Köster, E. & Pumpanen, J. Recovery in fungal biomass is related to decrease in soil organic matter turnover time in a boreal fire chronosequence. Geoderma 235–236, 74–82 (2014).

    Google Scholar 

  45. O’Donnell, J. A. et al. The effect of fire and permafrost interactions on soil carbon accumulation in an upland black spruce ecosystem of interior Alaska: implications for post-thaw carbon loss. Glob. Chang. Biol. 17, 1461–1474 (2011).

    Google Scholar 

  46. Butnor, J. R. et al. Vertical distribution and persistence of soil organic carbon in fire-adapted longleaf pine forests. For. Ecol. Manage. 390, 15–26 (2017).

    Google Scholar 

  47. Sollins, P., Homann, P. & Caldwell, B. A. Stabilization and destabilization of soil organic matter: mechanisms and controls. Geoderma 74, 65–105 (1996).

    Google Scholar 

  48. Six, J., Conant, R. T., Paul, E. A. & Paustian, K. Stabilization mechanisms of soil organic matter: implications for C-saturation of soils. Plant Soil 241, 155–176 (2002).

    Google Scholar 

  49. Shi, Z. et al. The age distribution of global soil carbon inferred from radiocarbon measurements. Nat. Geosci. 13, 555–559 (2020).

    Google Scholar 

  50. Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).

    Google Scholar 

  51. Lutzow, M. V. et al. Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions – a review. Eur. J. Soil Sci. 57, 426–445 (2006).

    Google Scholar 

  52. Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).

    Google Scholar 

  53. Six, J., Bossuyt, H., Degryze, S. & Denef, K. A history of research on the link between (micro)aggregates, soil biota, and soil organic matter dynamics. Soil Tillage Res. 79, 7–31 (2004).

    Google Scholar 

  54. Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A. & Zavala, L. M. Fire effects on soil aggregation: a review. Earth Sci. Rev. 109, 44–60 (2011).

    Google Scholar 

  55. Chen, H. Y. H. & Shrestha, B. M. Stand age, fire and clearcutting affect soil organic carbon and aggregation of mineral soils in boreal forests. Soil Biol. Biochem. 50, 149–157 (2012).

    Google Scholar 

  56. Arocena, J. M. & Opio, C. Prescribed fire-induced changes in properties of sub-boreal forest soils. Geoderma 113, 1–16 (2003).

    Google Scholar 

  57. Jian, M., Berhe, A. A., Berli, M. & Ghezzehei, T. A. Vulnerability of physically protected soil organic carbon to loss under low severity fires. Front. Environ. Sci. 6, 66 (2018).

    Google Scholar 

  58. Debano, L. F. The role of fire and soil heating on water repellency in wildland environments: a review. J. Hydrol. 231, 195–206 (2000).

    Google Scholar 

  59. Hallett, P. D. et al. Disentangling the impact of AM fungi versus roots on soil structure and water transport. Plant Soil 314, 183–196 (2009).

    Google Scholar 

  60. Bardgett, R. D., Mommer, L. & De Vries, F. T. Going underground: root traits as drivers of ecosystem processes. Trends Ecol. Evol. 29, 692–699 (2014).

    Google Scholar 

  61. Hartnett, D. C., Potgieter, A. F. & Wilson, G. W. T. Fire effects on mycorrhizal symbiosis and root system architecture in southern African savanna grasses. Afr. J. Ecol. 42, 328–337 (2004).

    Google Scholar 

  62. Eom, A.-H., Hartnett, D. C., Wilson, G. W. T. & Figge, D. A. H. The effect of fire, mowing and fertilizer amendment on arbuscular mycorrhizas in tallgrass prairie. Am. Midl. Nat. 142, 55–70 (1999).

    Google Scholar 

  63. Sankey, J. B. et al. Climate, wildfire, and erosion ensemble foretells more sediment in western USA watersheds. Geophys. Res. Lett. 44, 8884–8892 (2017).

    Google Scholar 

  64. Van Oost, K. et al. Legacy of human-induced C erosion and burial on soil-atmosphere C exchange. Proc. Natl Acad. Sci. USA 109, 19492–19497 (2012).

    Google Scholar 

  65. Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. Advances in Agronomy 130, 1–140 (2015).

    Google Scholar 

  66. Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).

    Google Scholar 

  67. Baldock, J. A. & Skjemstad, J. O. Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org. Geochem. 31, 697–710 (2000).

    Google Scholar 

  68. Kaiser, K. & Guggenberger, G. Mineral surfaces and soil organic matter. Eur. J. Soil Sci. 54, 219–236 (2003).

    Google Scholar 

  69. Knicker, H. How does fire affect the nature and stability of soil organic nitrogen and carbon? A review. Biogeochemistry 85, 91–118 (2007).

    Google Scholar 

  70. Ketterings, Q. M., Bigham, J. M. & Laperche, V. Changes in soil mineralogy and texture caused by slash-and-burn fires in Sumatra, Indonesia. Soil Sci. Soc. Am. J. 64, 1108–1117 (2000).

    Google Scholar 

  71. Ulery, A. L., Graham, R. C. & Bowen, L. H. Forest fire effects on soil phyllosilicates in California. Soil Sci. Soc. Am. J. 60, 309–315 (1996).

    Google Scholar 

  72. Fernández, I., Cabaneiro, A. & Carballas, T. Organic matter changes immediately after a wildfire in an atlantic forest soil and comparison with laboratory soil heating. Soil Biol. Biochem. 29, 1–11 (1997).

    Google Scholar 

  73. Heckman, K., Campbell, J., Powers, H., Law, B. & Swanston, C. The influence of fire on the radiocarbon signature and character of soil organic matter in the Siskiyou national forest, Oregon, USA. Fire Ecol. 9, 40–56 (2013).

    Google Scholar 

  74. Knicker, H., González-Vila, F. J. & González-Vázquez, R. Biodegradability of organic matter in fire-affected mineral soils of Southern Spain. Soil Biol. Biochem. 56, 31–39 (2013).

    Google Scholar 

  75. Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).

    Google Scholar 

  76. Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter: fourteen years on. Soil Biol. Biochem. 105, A3–A8 (2017).

    Google Scholar 

  77. Neff, J., Harden, J. & Gleixner, G. Fire effects on soil organic matter content, composition, and nutrients in boreal interior Alaska. Can. J. For. 35, 2178–2187 (2005).

    Google Scholar 

  78. Harden, J. W. et al. Chemistry of burning the forest floor during the FROSTFIRE experimental burn, interior Alaska, 1999. Glob. Biogeochem. Cycles https://doi.org/10.1029/2003GB002194 (2004).

  79. DeLuca, T. H. & Aplet, G. H. Charcoal and carbon storage in forest soils of the Rocky Mountain West. Front. Ecol. Environ. 6, 18–24 (2008).

    Google Scholar 

  80. Preston, C. M. & Schmidt, M. W. I. Black (pyrogenic) carbon in boreal forests: a synthesis of current knowledge and uncertainties. Biogeosci. Discuss. 3, 211–271 (2006).

    Google Scholar 

  81. Krishnaraj, S. J., Baker, T. G., Polglase, P. J., Volkova, L. & Weston, C. J. Prescribed fire increases pyrogenic carbon in litter and surface soil in lowland Eucalyptus forests of south-eastern Australia. For. Ecol. Manage. 366, 98–105 (2016).

    Google Scholar 

  82. Singh, N., Abiven, S., Torn, M. S. & Schmidt, M. W. I. Fire-derived organic carbon in soil turns over on a centennial scale. Biogeosciences 9, 2847–2857 (2012).

    Google Scholar 

  83. Knicker, H., Almendros, G., González-Vila, F. J., Martin, F. & Lüdemann, H. D. 13C- and 15N-NMR spectroscopic examination of the transformation of organic nitrogen in plant biomass during thermal treatment. Soil Biol. Biochem. 28, 1053–1060 (1996).

    Google Scholar 

  84. Waldrop, M. P. & Harden, J. W. Interactive effects of wildfire and permafrost on microbial communities and soil processes in an Alaskan black spruce forest. Glob. Chang. Biol. 14, 2591–2602 (2008).

    Google Scholar 

  85. Pellegrini, A. F. A. et al. Repeated fire shifts carbon and nitrogen cycling by changing plant inputs and soil decomposition across ecosystems. Ecol. Monogr. 90, e01409 (2020).

    Google Scholar 

  86. Wang, Q., Zhong, M. & Wang, S. A meta-analysis on the response of microbial biomass, dissolved organic matter, respiration, and N mineralization in mineral soil to fire in forest ecosystems. For. Ecol. Manage. 271, 91–97 (2012).

    Google Scholar 

  87. Dooley, S. R. & Treseder, K. K. The effect of fire on microbial biomass: a meta-analysis of field studies. Biogeochemistry 109, 49–61 (2012).

    Google Scholar 

  88. Beringer, J. et al. Fire impacts on surface heat, moisture and carbon fluxes from a tropical savanna in northern Australia. Int. J. Wildland Fire 12, 333–340 (2003).

    Google Scholar 

  89. Dove, N. C. & Hart, S. C. Fire reduces fungal species richness and in situ mycorrhizal colonization: a meta-analysis. Fire Ecol. 13, 37–65 (2017).

    Google Scholar 

  90. Pressler, Y., Moore, J. C. & Cotrufo, M. F. Belowground community responses to fire: meta-analysis reveals contrasting responses of soil microorganisms and mesofauna. Oikos 128, 309–327 (2019).

    Google Scholar 

  91. Holden, S. R., Gutierrez, A. & Treseder, K. K. Changes in soil fungal communities, extracellular enzyme activities, and litter decomposition across a fire chronosequence in Alaskan boreal forests. Ecosystems 16, 34–46 (2013).

    Google Scholar 

  92. Gongalsky, K. B. et al. Forest fire induces short-term shifts in soil food webs with consequences for carbon cycling. Ecol. Lett. 24, 438–450 (2021).

    Google Scholar 

  93. Wardle, D. A., Nilsson, M.-C. & Zackrisson, O. Fire-derived charcoal causes loss of forest humus. Science 320, 629 (2008).

    Google Scholar 

  94. Whitman, T. et al. Soil bacterial and fungal response to wildfires in the Canadian boreal forest across a burn severity gradient. Soil Biol. Biochem. 138, 107571 (2019).

    Google Scholar 

  95. Harden, J. W. et al. The role of fire in the boreal carbon budget. Glob. Chang. Biol. 6, 174–184 (2000).

    Google Scholar 

  96. Smith, H. G., Sheridan, G. J., Lane, P. N. J., Nyman, P. & Haydon, S. Wildfire effects on water quality in forest catchments: a review with implications for water supply. J. Hydrol. 396, 170–192 (2011).

    Google Scholar 

  97. Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. New Phytol. 205, 1525–1536 (2015).

    Google Scholar 

  98. Pellegrini, A. F. A. et al. Low-intensity frequent fires in coniferous forests transform soil organic matter in ways that may offset ecosystem carbon losses. Glob. Chang. Biol. 27, 3810–3823 (2021).

    Google Scholar 

  99. Griscom, B. W. et al. Natural climate solutions. Proc. Natl Acad. Sci. USA 114, 11645–11650 (2017).

    Google Scholar 

  100. Bossio, D. A. et al. The role of soil carbon in natural climate solutions. Nat. Sustain. 3, 391–398 (2020).

    Google Scholar 

  101. Anderegg, W. R. L. et al. Climate-driven risks to the climate mitigation potential of forests. Science 368, 6497 (2020).

    Google Scholar 

  102. Walker, R. B., Coop, J. D., Parks, S. A. & Trader, L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 9, e02182 (2018).

    Google Scholar 

  103. Wieder, W. R., Boehnert, J., Bonan, G. B. & Langseth, M. Regridded Harmonized World Soil Database v1.2 (Oak Ridge National Laboratory, 2014); https://doi.org/10.3334/ORNLDAAC/1247

  104. Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).

    Google Scholar 

  105. Oliveras, I. et al. Effects of fire regimes on herbaceous biomass and nutrient dynamics in the Brazilian savanna. Int. J. Wildland Fire 22, 368–380 (2013).

    Google Scholar 

  106. Newland, J. A. & DeLuca, T. H. Influence of fire on native nitrogen-fixing plants and soil nitrogen status in ponderosa pine - Douglas-fir forests in western Montana. Can. J. For. Res. 30, 274–282 (2000).

    Google Scholar 

  107. Bormann, B. T., Homann, P. S., Darbyshire, R. L. & Morrissette, B. A. Intense forest wildfire sharply reduces mineral soil C and N: the first direct evidence. Can. J. For. Res. 38, 2771–2783 (2008).

    Google Scholar 

  108. Reich, P. B., Peterson, D. W., Wedin, D. A. & Wrage, K. Fire and vegetation effects on productivity and nitrogen cycling across a forest-grassland continuum. Ecology 82, 1703–1719 (2001).

    Google Scholar 

  109. O’Neill, K. P., Richter, D. D. & Kasischke, E. S. Succession-driven changes in soil respiration following fire in black spruce stands of interior Alaska. Biogeochemistry 80, 1–20 (2006).

    Google Scholar 

  110. Köster, E. et al. Changes in fluxes of carbon dioxide and methane caused by fire in Siberian boreal forest with continuous permafrost. J. Environ. Manage. 228, 405–415 (2018).

    Google Scholar 

  111. Zhao, H., Tong, D. Q., Lin, Q., Lu, X. & Wang, G. Effect of fires on soil organic carbon pool and mineralization in a Northeastern China wetland. Geoderma 189–190, 532–539 (2012).

    Google Scholar 

  112. Kuzyakov, Y., Friedel, J. & Stahr, K. Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498 (2000).

    Google Scholar 

  113. Wang, J., Xiong, Z. & Kuzyakov, Y. Biochar stability in soil: meta‐analysis of decomposition and priming effects. Glob. Change Biol. Bioenergy 8, 512–523 (2016).

    Google Scholar 

  114. Pellegrini, A. F. A. et al. Decadal changes in fire frequencies shift tree communities and functional traits. Nat. Ecol. Evol. 5, 504–512 (2021).

    Google Scholar 

  115. Peterson, D. W., Reich, P. B., Wrage, K. J. & Franklin, J. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. J. Veg. Sci. 18, 3–12 (2007).

    Google Scholar 

  116. Reisser, M., Purves, R. S., Schmidt, M. W. I. & Abiven, S. Pyrogenic carbon in soils: A literature-based inventory and a global estimation of its content in soil organic carbon and stocks. Front. Earth Sci. 4, 80 (2016).

    Google Scholar 

  117. Loades, K. W., Bengough, A. G., Bransby, M. F. & Hallett, P. D. Planting density influence on fibrous root reinforcement of soils. Ecol. Eng. 36, 276–284 (2010).

    Google Scholar 

  118. Balshi, M. S. et al. The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: a process-based analysis. J. Geophys. Res. 112, G02029 (2007).

    Google Scholar 

  119. Aaltonen, H. et al. Forest fires in Canadian permafrost region: the combined effects of fire and permafrost dynamics on soil organic matter quality. Biogeochemistry 143, 257–274 (2019).

    Google Scholar 

  120. Treseder, K. K., Mack, M. C. & Cross, A. Relationships among fires, fungi, and soil dynamics in Alaskan boreal forests. Ecol. Appl. 14, 1826–1838 (2004).

    Google Scholar 

  121. Kelly, J. et al. Boreal forest soil carbon fluxes one year after a wildfire: effects of burn severity and management. Glob. Chang. Biol. 27, 4181–4195 (2021).

    Google Scholar 

  122. Aaltonen, H. et al. Temperature sensitivity of soil organic matter decomposition after forest fire in Canadian permafrost region. J. Environ. Manage. 241, 637–644 (2019).

    Google Scholar 

Download references

Acknowledgements

A.F.A.P. acknowledges support from the Gatsby Charitable Foundation. This paper is a result of a meeting of the Plant and Soil group in the Department of Earth System Science and Woods Institute for the Environment at Stanford University. K.S.H. was supported by the Stanford Woods Institute for the Environment and The Center for Ecosystem Climate Solutions. K.G. was supported as a Lawrence Fellow at Lawrence Livermore National Laboratory (LLNL) by the LLNL-LDRD Program under Project No. 21-ERD-045. Work at LLNL was conducted under the auspices of the US DOE Contract DE-AC52-07NA27344. R.B.J. acknowledges support from the Gordon and Betty Moore Foundation. Comments by W. Anderegg, J. Schoenecker and E. Wilding improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

A.F.A.P. conceived of the project and led the writing of the text. All other authors provided substantial conceptual input and contributed to the writing. K.G. and A.F.A.P. produced Figs. 1 and 2, and 3 and 4, respectively, and jointly produced Table 1.

Corresponding author

Correspondence to Adam F. A. Pellegrini.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Giacomo Certini, Stefan Doerr and Matthew Jones for their contribution to the peer review of this work. Primary Handling Editors: Kyle Frischkorn and Xujia Jiang.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Ecoregion distribution.

Distribution of ecoregions used in the calculations for Table 1.

Supplementary information

Supplementary Information

Supplementary methods.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pellegrini, A.F.A., Harden, J., Georgiou, K. et al. Fire effects on the persistence of soil organic matter and long-term carbon storage. Nat. Geosci. 15, 5–13 (2022). https://doi.org/10.1038/s41561-021-00867-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00867-1

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing