Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Deformation-controlled long-period seismicity in low-cohesion volcanic sediments

Abstract

Volcano seismicity is an important tool in monitoring and forecasting activity at volcanoes globally. Volcanic earthquakes show diverse spectral characteristics, of which shallow long-period (low-frequency) seismicity and long-duration tremor are generally interpreted as indicators of fluid migration, and as potential eruption precursors. Here we show that a common low-cohesion volcanic sediment from the Campi Flegrei caldera (Italy) produces low-frequency and long-duration seismicity as it undergoes deformation in dry conditions. We employed acoustic-emission rock-deformation experiments at a range of strain rates to produce events that, when normalized for scale, were spectrally indistinguishable from the long-period and tremor seismicity observed in natural volcanic settings. The generation of these signals was enhanced at lower laboratory strain rates. Correlated X-ray tomography of the samples before and after deformation constrained the source as distributed damage.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Example XCT virtual slices of a sample before and after a low-strain-rate deformation experiment.
Fig. 2: Event representations of typical natural volcanic events (left column) and typical experimental (right column) events recorded in this work.
Fig. 3: Comparison of peak seismic frequencies in slow and fast deformation experiments.
Fig. 4: Varied duration and seismic character of LP-type events.

Data availability

The data used in this work are held at the National Geoscience Data Centre, as item number 163527. These include the 1 Hz deformation logs, 10 MHz 12-channel AE event recordings, raw XCT slices from before and after deformation, and the processing code used to generate the statistical analyses and sonograms54.

References

  1. 1.

    Scarpa, R., Tilling, R. I. & McNutt, S. R. in Monitoring and Mitigation of Volcano Hazards https://doi.org/10.1007/978-3-642-80087-0_3 (Springer, 1996).

  2. 2.

    Chouet, B. A. Long-period volcano seismicity: its source and use in eruption forecasting. Nature 380, 309–316 (1996).

    Google Scholar 

  3. 3.

    Kilburn, C. R. J. Multiscale fracturing as a key to forecasting volcanic eruptions. J. Volcanol. Geotherm. Res. 125, 271–289 (2003).

    Google Scholar 

  4. 4.

    Cortés, G. et al. Parallel system architecture (PSA): an efficient approach for automatic recognition of volcano-seismic events. J. Volcanol. Geotherm. Res. 271, 1–10 (2014).

    Google Scholar 

  5. 5.

    Benson, P. M., Vinciguerra, S., Meredith, P. G. & Young, R. P. Spatio-temporal evolution of volcano seismicity: a laboratory study. Earth Planet. Sci. Lett. 297, 315–323 (2010).

    Google Scholar 

  6. 6.

    Lokmer, I., Saccorotti, G., Di Lieto, B. & Bean, C. J. Temporal evolution of long-period seismicity at Etna Volcano, Italy, and its relationships with the 2004–2005 eruption. Earth Planet. Sci. Lett. 266, 205–220 (2008).

    Google Scholar 

  7. 7.

    Clarke, J. et al. The relation between viscosity and acoustic emissions as a laboratory analogue for volcano seismicity. Geology 47, 499–503 (2019).

    Google Scholar 

  8. 8.

    McNutt, S. R. in Monitoring and Mitigation of Volcano Hazards (eds Scarpa, R., Tilling, R. I. & McNutt, S. R.) 99–146 https://doi.org/10.1007/978-3-642-80087-0_3 (Springer, 1996).

  9. 9.

    Harrington, R. M. & Benson, P. M. Analysis of laboratory simulations of volcanic hybrid earthquakes using empirical Green’s functions. J. Geophys. Res. Solid Earth 116, 1–13 (2011).

    Google Scholar 

  10. 10.

    Jolly, A. D., Neuberg, J., Jousset, P. & Sherburn, S. A new source process for evolving repetitious earthquakes at Ngauruhoe volcano, New Zealand. J. Volcanol. Geotherm. Res. 215–216, 26–39 (2012).

    Google Scholar 

  11. 11.

    Kennedy, B. M. et al. Pressure controlled permeability in a conduit filled with fractured hydrothermal breccia reconstructed from ballistics from Whakaari (White Island), New Zealand. Geosciences 10, 138 (2020).

    Google Scholar 

  12. 12.

    Chardot, L., Jolly, A. D., Kennedy, B. M., Fournier, N. & Sherburn, S. Using volcanic tremor for eruption forecasting at White Island volcano (Whakaari), New Zealand. J. Volcanol. Geotherm. Res. 302, 11–23 (2015).

    Google Scholar 

  13. 13.

    Barberi, F., Corrado, G., Innocenti, F. & Luongo, G. Phlegraean Fields 1982–1984: brief chronicle of a volcano emergency in a densely populated area. Bull. Volcanol. 47, 175–185 (1984).

    Google Scholar 

  14. 14.

    Armienti, P., Barberi, F. & Innocenti, F. A model of the Phlegraean Fields magma chamber in the last 10,500 years. Bull. Volcanol. 47, 349–358 (1984).

    Google Scholar 

  15. 15.

    Scarpa, R., Tilling, R. I., Barberi, F. & Carapezza, M. L. in Monitoring and Mitigation of Volcano Hazards 771–786 https://doi.org/10.1007/978-3-642-80087-0_23 (Springer, 1996).

  16. 16.

    Hicks, A. & Few, R. Trajectories of social vulnerability during the Soufrière Hills volcanic crisis. J. Appl. Volcanol. 4, 10 (2015).

    Google Scholar 

  17. 17.

    Kilburn, C. R. J., De Natale, G. & Carlino, S. Progressive approach to eruption at Campi Flegrei caldera in southern Italy. Nat. Commun. 8, 15312 (2017).

    Google Scholar 

  18. 18.

    Brown, S. K., Sparks, R. S. J. & Jenkins, S. F. in Global Volcanic Hazards and Risk (eds Loughlin, S. C., Sparks, S., Brown, S. K., Jenkins, S. F. & Vye-Brown, C.) 359–369 https://doi.org/10.1017/CBO9781316276273.025 (Cambridge Univ. Press, 2015).

  19. 19.

    Orsi, G., D’Antonio, M., Vita, Sde & Gallo, G. The Neapolitan Yellow Tuff, a large-magnitude trachytic phreatoplinian eruption: eruptive dynamics, magma withdrawal and caldera collapse. J. Volcanol. Geotherm. Res. 53, 275–287 (1992).

    Google Scholar 

  20. 20.

    Deino, A. L., Orsi, G., de Vita, S. & Piochi, M. The age of the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei caldera—Italy) assessed by 40Ar/39Ar dating method. J. Volcanol. Geotherm. Res. 133, 157–170 (2004).

    Google Scholar 

  21. 21.

    Dvorak, J. J. & Berrino, G. Recent ground movement and seismic activity in Campi Flegrei, southern Italy: episodic growth of a resurgent dome. J. Geophys. Res. 96, 2309–2323 (1991).

    Google Scholar 

  22. 22.

    Orsi, G., De Vita, S. & di Vito, M. The restless, resurgent Campi Flegrei nested caldera (Italy): constraints on its evolution and configuration. J. Volcanol. Geotherm. Res. 74, 179–214 (1996).

    Google Scholar 

  23. 23.

    De Natale, G. et al. The Campi Flegrei caldera: unrest mechanisms and hazards. Geol. Soc. Lond. Spec. Publ. 269, 25–45 (2006).

    Google Scholar 

  24. 24.

    Langella, A. et al. The Neapolitan Yellow Tuff: an outstanding example of heterogeneity. Constr. Build. Mater. 136, 361–373 (2017).

    Google Scholar 

  25. 25.

    Moon, V. G. Geotechnical characteristics of ignimbrite: a soft pyroclastic rock type. Eng. Geol. 35, 33–48 (1993).

    Google Scholar 

  26. 26.

    Quane, S. L. & Russell, J. K. Rock strength as a metric of welding intensity in pyroclastic deposits. Eur. J. Mineral. 15, 855–864 (2003).

    Google Scholar 

  27. 27.

    Binal, A. Prediction of mechanical properties of non-welded and moderately welded ignimbrite using physical properties, ultrasonic pulse velocity, and point load index tests. Q. J. Eng. Geol. Hydrogeol. 42, 107–122 (2009).

    Google Scholar 

  28. 28.

    Heap, M. J. et al. Quantifying the role of hydrothermal alteration in creating geothermal and epithermal mineral resources: the Ohakuri ignimbrite (Taupō Volcanic Zone, New Zealand). J. Volcanol. Geotherm. Res. 390, 106703 (2020).

    Google Scholar 

  29. 29.

    Fazio, M., Alparone, S., Benson, P. M., Cannata, A. & Vinciguerra, S. Genesis and mechanisms controlling tornillo seismo-volcanic events in volcanic areas. Sci. Rep. 9, 7338 (2019).

    Google Scholar 

  30. 30.

    Kendrick, J. E. et al. Tracking the permeable porous network during strain-dependent magmatic flow. J. Volcanol. Geotherm. Res. 260, 117–126 (2013).

    Google Scholar 

  31. 31.

    Burlini, L. et al. Seismicity preceding volcanic eruptions: new experimental insights. Geology 35, 183–186 (2007).

    Google Scholar 

  32. 32.

    Main, I. Earthquake scaling. Nature 357, 27–28 (1992).

    Google Scholar 

  33. 33.

    Hatton, C. G., Main, I. G. & Meredith, P. G. A comparison of seismic and structural measurements of scaling exponents during tensile subcritical crack growth. J. Struct. Geol. 15, 1485–1495 (1993).

    Google Scholar 

  34. 34.

    Aki, K. & Koyanagi, R. Deep volcanic tremor and magma ascent mechanism under Kilauea, Hawaii. J. Geophys. Res. 86, 7095–7109 (1981).

    Google Scholar 

  35. 35.

    Benson, P. M., Thompson, B. D., Meredith, P. G., Vinciguerra, S. & Young, R. P. Imaging slow failure in triaxially deformed Etna basalt using 3D acoustic-emission location and X-ray computed tomography. Geophys. Res. Lett. 34, L03303 (2007).

    Google Scholar 

  36. 36.

    Fazio, M., Benson, P. M. & Vinciguerra, S. On the generation mechanisms of fluid-driven seismic signals related to volcano-tectonics. Geophys. Res. Lett. 44, 734–742 (2017).

    Google Scholar 

  37. 37.

    Heap, M. J. et al. The influence of water on the strength of Neapolitan Yellow Tuff, the most widely used building stone in Naples (Italy. Bull. Volcanol. 80, 51 (2018).

  38. 38.

    Ulusay, R. & Hudson, J. A. (eds) The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006 135–137 (ISRM and Turkish National Group of ISRM, 2007).

  39. 39.

    Townend, E. et al. Imaging compaction band propagation in Diemelstadt sandstone using acoustic emission locations. Geophys. Res. Lett. 35, L15301 (2008).

    Google Scholar 

  40. 40.

    Smith, R., Sammonds, P. R. & Kilburn, C. R. J. Fracturing of volcanic systems: experimental insights into pre-eruptive conditions. Earth Planet. Sci. Lett. 280, 211–219 (2009).

    Google Scholar 

  41. 41.

    Lockner, D. A., Byerlee, J. D., Kuksenko, V., Ponomarev, A. & Sidorin, A. Quasi-static fault growth and shear fracture energy in granite. Nature 350, 39–42 (1991).

    Google Scholar 

  42. 42.

    Thompson, B. D. Observations of premonitory acoustic emission and slip nucleation during a stick slip experiment in smooth faulted Westerly granite. Geophys. Res. Lett. 32, L10304 (2005).

    Google Scholar 

  43. 43.

    Harnett, C. E., Benson, P. M., Rowley, P. & Fazio, M. Fracture and damage localization in volcanic edifice rocks from El Hierro, Stromboli and Tenerife. Sci. Rep. 8, 1942 (2018).

    Google Scholar 

  44. 44.

    Bean, C. J. et al. Long-period seismicity in the shallow volcanic edifice formed from slow-rupture earthquakes. Nat. Geosci. 7, 71–75 (2014).

    Google Scholar 

  45. 45.

    Neuberg, J., Luckett, R., Baptie, B. & Olsen, K. Models of tremor and low-frequency earthquake swarms on Montserrat. J. Volcanol. Geotherm. Res. 101, 83–104 (2000).

    Google Scholar 

  46. 46.

    Massonnet, D. & Feigl, K. L. Radar interferometry and its application to changes in the Earth’s surface. Rev. Geophys. 36, 441–500 (1998).

    Google Scholar 

  47. 47.

    Benson, P. M., Vinciguerra, S., Meredith, P. G. & Young, R. P. Laboratory simulation of volcano seismicity. Science 322, 249–252 (2008).

    Google Scholar 

  48. 48.

    Wong, T. & Baud, P. The brittle-ductile transition in porous rock: a review. J. Struct. Geol. 44, 25–53 (2012).

    Google Scholar 

  49. 49.

    Vajdova, V., Zhu, W., Natalie Chen, T.-M. & Wong, T. Micromechanics of brittle faulting and cataclastic flow in Tavel limestone. J. Struct. Geol. 32, 1158–1169 (2010).

    Google Scholar 

  50. 50.

    Barberi, F. et al. The Campanian ignimbrite: a major prehistoric eruption in the Neapolitan area (Italy). Bull. Volcanol. 41, 10–31 (1978).

    Google Scholar 

  51. 51.

    Scarpati, C., Cole, P. & Perrotta, A. The Neapolitan Yellow Tuff—a large volume multiphase eruption from Campi Flegrei, Southern Italy. Bull. Volcanol. 55, 343–356 (1993).

    Google Scholar 

  52. 52.

    Benson, P. M. et al. Laboratory simulations of fluid-induced seismicity, hydraulic fracture, and fluid flow. Geomech. Energy Environ. 24, 100169 (2020).

    Google Scholar 

  53. 53.

    Fairhurst, C. E. & Hudson, J. A. Draft ISRM suggested method for the complete stress-strain curve for intact rock in uniaxial compression. Int. J. Rock. Mech. Min. Sci. 36, 279–289 (1999).

    Google Scholar 

  54. 54.

    Rowley, P., Benson, P. P. & Beam, C. J. Deformation and acoustic emission of Neapolitan Yellow Tuff (NERC EDS National Geoscience Data Centre); https://doi.org/10.5285/321869e2-e2d2-4e67-ba28-e961ad8bb79f (accessed 16 February 2021).

Download references

Acknowledgements

We are grateful to E. Butcher for the sample preparation work, E. Pegge for collating the event classifications and F. Cappuccio for measuring the postdeformation porosity values. We acknowledge support from the Zeiss Global Centre at the University of Portsmouth for providing the X-ray microscopy facilities used in this study, and the assistance of the National Geoscience Data Centre in accommodating our dataset.

Author information

Affiliations

Authors

Contributions

P.R. drafted the paper. P.R. and P.B. carried out the laboratory experiments. P.R., P.B. and C.B. discussed results, carried out the analysis and edited the draft paper.

Corresponding author

Correspondence to Pete Rowley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Geoscience thanks Christopher Kilburn, Ben Kennedy and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Primary Handling Editor(s): Stefan Lachowycz.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Data 1

Dimensional data and calculations to generate the volumetric strain value for the slow deformation experiment.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rowley, P., Benson, P.M. & Bean, C.J. Deformation-controlled long-period seismicity in low-cohesion volcanic sediments. Nat. Geosci. 14, 942–948 (2021). https://doi.org/10.1038/s41561-021-00844-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41561-021-00844-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing