Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures

Abstract

Operating aqueous redox flow batteries (ARFBs) at low temperatures is prohibited by limited solubility of redox-active materials, freezing electrolytes and sluggish reaction kinetics. Here we report a multi-electron heteropoly acid (H6P2W18O62, HPOM) negolyte that enables high-performance ARFBs at low temperatures. The proton (H+) in HPOM warrants a much higher solubility of polyoxometalates (POMs) (0.74 M at 25 °C and 0.5 M at −20 °C) compared with other cations (Li+/Na+/K+) owing to the strong solvation shell of H+ preventing precipitation. The HPOM also exhibits an exceptionally low freezing point and high conductivity owing to its high solubility and Grotthuss proton-conduction mechanism. These merits warrant HPOM as an ideal POM candidate for high-power-density low-temperature ARFB applications. Using a 0.5 M HPOM electrolyte, the ARFBs demonstrate power density (282.4 mW cm2) and stability (79.6 Ah l1negolyte at 160 mA cm2 over 1,200 h without decay) at −20 °C, showing promising application potential under cold weather conditions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Physico-chemical properties of the MPOM electrolyte at varying temperatures.
Fig. 2: Electrochemical properties of HPOM.
Fig. 3: Electrochemical stability of HPOM negolyte at 25 °C.
Fig. 4: Electrochemical performance of HPVB flow cells using 0.5 M HPOM (40 ml min1).

Data availability

The datasets analysed and generated during the current study are included in the paper and its Supplementary Information.

References

  1. Zeyringer, M., Price, J., Fais, B., Li, P.-H. & Sharp, E. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nat. Energy 3, 395–403 (2018).

    Article  Google Scholar 

  2. Luo, J., Hu, B., Hu, M., Zhao, Y. & Liu, T. L. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240 (2019).

    Article  Google Scholar 

  3. Soloveichik, G. L. Flow batteries: current status and trends. Chem. Rev. 115, 11533–11558 (2015).

    Article  Google Scholar 

  4. Winsberg, J., Hagemann, T., Janoschka, T., Hager, M. D. & Schubert, U. S. Redox-flow batteries: from metals to organic redox-active materials. Angew. Chem. 56, 686–711 (2017).

    Article  Google Scholar 

  5. Wang, K. et al. Broad temperature adaptability of vanadium redox flow battery—part 3: the effects of total vanadium concentration and sulfuric acid concentration. Electrochim. Acta 259, 11–19 (2018).

    Article  Google Scholar 

  6. Liu, Y. et al. Broad temperature adaptability of vanadium redox flow battery—part 4: unraveling wide temperature promotion mechanism of bismuth for V2+/V3+ couple. J. Energy Chem. 27, 1333–1340 (2018).

    Article  Google Scholar 

  7. Xiao, S. et al. Broad temperature adaptability of vanadium redox flow battery—part 1: electrolyte research. Electrochim. Acta 187, 525–534 (2016).

    Article  Google Scholar 

  8. Xi, J. et al. Broad temperature adaptability of vanadium redox flow battery—part 2: cell research. Electrochim. Acta 191, 695–704 (2016).

    Article  Google Scholar 

  9. Mousa, A. & Skyllas-Kazacos, M. Effect of additives on the low-temperature stability of vanadium redox flow battery negative half-cell electrolyte. ChemElectroChem 2, 1742–1751 (2015).

    Article  Google Scholar 

  10. Janoschka, T. et al. An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. Nature 527, 78–81 (2015).

    Article  Google Scholar 

  11. Li, Z. & Lu, Y.-C. Material design of aqueous redox flow batteries: fundamental challenges and mitigation strategies. Adv. Mater. 32, 2002132 (2020).

    Article  Google Scholar 

  12. Wang, C. et al. Molecular design of fused-ring phenazine derivatives for long-cycling alkaline redox flow batteries. ACS Energy Lett. 5, 411–417 (2020).

    Article  Google Scholar 

  13. Kwabi, D. G., Ji, Y. & Aziz, M. J. Electrolyte lifetime in aqueous organic redox flow batteries: a critical review. Chem. Rev. 120, 6467–6489 (2020).

    Article  Google Scholar 

  14. Goulet, M.-A. et al. Extending the lifetime of organic flow batteries via redox state management. J. Am. Chem. Soc. 141, 8014–8019 (2019).

    Article  Google Scholar 

  15. Li, Z. & Lu, Y.-C. Polysulfide-based redox flow batteries with long life and low levelized cost enabled by charge-reinforced ion-selective membranes. Nat. Energy 6, 517–528 (2021).

    Article  Google Scholar 

  16. Li, Z., Weng, G., Zou, Q., Cong, G. & Lu, Y.-C. A high-energy and low-cost polysulfide/iodide redox flow battery. Nano Energy 30, 283–292 (2016).

    Article  Google Scholar 

  17. Li, B. et al. Ambipolar zinc-polyiodide electrolyte for a high-energy density aqueous redox flow battery. Nat. Commun. 6, 6303 (2015).

    Article  Google Scholar 

  18. Zhang, L. & Yu, G. Hybrid electrolyte engineering enables safe and wide-temperature redox flow batteries. Angew. Chem. 60, 15028–15035 (2021).

    Article  Google Scholar 

  19. Ueda, T. Electrochemistry of polyoxometalates: from fundamental aspects to applications. ChemElectroChem 5, 823–838 (2018).

    Article  Google Scholar 

  20. Wang, S.-S. & Yang, G.-Y. Recent advances in polyoxometalate-catalyzed reactions. Chem. Rev. 115, 4893–4962 (2015).

    Article  Google Scholar 

  21. Li, Q. et al. Polyoxometalate-based materials for advanced electrochemical energy conversion and storage. Chem. Eng. J. 351, 441–461 (2018).

    Article  Google Scholar 

  22. Wang, H. et al. In operando X-ray absorption fine structure studies of polyoxometalate molecular cluster batteries: polyoxometalates as electron sponges. J. Am. Chem. Soc. 134, 4918–4924 (2012).

    Article  Google Scholar 

  23. Jiang, H. et al. A high-rate aqueous proton battery delivering power below −78 °C via an unfrozen phosphoric acid. Adv. Energy Mater. 10, 2000968 (2020).

    Article  Google Scholar 

  24. Yue, F. et al. An ultralow temperature aqueous battery with proton chemistry. Angew. Chem. 60, 13882–13886 (2021).

    Article  Google Scholar 

  25. Feng, T. et al. A redox flow battery with high capacity retention using 12-phosphotungstic acid/iodine mixed solution as electrolytes. J. Power Sources 436, 226831 (2019).

    Article  Google Scholar 

  26. Friedl, J. et al. Asymmetric polyoxometalate electrolytes for advanced redox flow batteries. Energy Environ. Sci. 11, 3010–3018 (2018).

    Article  Google Scholar 

  27. Liu, Y. et al. An aqueous redox flow battery with a tungsten—cobalt heteropolyacid as the electrolyte for both the anode and cathode. Adv. Energy Mater. 7, 1601224 (2017).

    Article  Google Scholar 

  28. Pratt, H. D. III & Anderson, T. M. Mixed addenda polyoxometalate “solutions” for stationary energy storage. Dalton Trans. 42, 15650–15655 (2013).

    Article  Google Scholar 

  29. Pratt, H. D., Pratt, W. R., Fang, X., Hudak, N. S. & Anderson, T. M. Mixed-metal, structural, and substitution effects of polyoxometalates on electrochemical behavior in a redox flow battery. Electrochim. Acta 138, 210–214 (2014).

    Article  Google Scholar 

  30. Chen, J.-J., Symes, M. D. & Cronin, L. Highly reduced and protonated aqueous solutions of [P2W18O62]6− for on-demand hydrogen generation and energy storage. Nat. Chem. 10, 1042–1047 (2018).

    Article  Google Scholar 

  31. Hollas, A. et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 3, 508–514 (2018).

    Article  Google Scholar 

  32. Huskinson, B. et al. A metal-free organic–inorganic aqueous flow battery. Nature 505, 195–198 (2014).

    Article  Google Scholar 

  33. Lin, K. et al. Alkaline quinone flow battery. Science 349, 1529–1531 (2015).

    Article  Google Scholar 

  34. Misra, A., Kozma, K., Streb, C. & Nyman, M. Beyond charge balance: counter-cations in polyoxometalate chemistry. Angew. Chem. 59, 596–612 (2020).

    Article  Google Scholar 

  35. Segado, M., Nyman, M. & Bo, C. Aggregation patterns in low- and high-charge anions define opposite solubility trends. J. Phys. Chem. B 123, 10505–10513 (2019).

    Article  Google Scholar 

  36. Zhang, Q. et al. Modulating electrolyte structure for ultralow temperature aqueous zinc batteries. Nat. Commun. 11, 4463 (2020).

    Article  Google Scholar 

  37. Chang, N. et al. An aqueous hybrid electrolyte for low-temperature zinc-based energy storage devices. Energy Environ. Sci. 13, 3527–3535 (2020).

    Article  Google Scholar 

  38. Matsumoto, M., Saito, S. & Ohmine, I. Molecular dynamics simulation of the ice nucleation and growth process leading to water freezing. Nature 416, 409–413 (2002).

    Article  Google Scholar 

  39. Zhang, Q. et al. Chaotropic anion and fast-kinetics cathode enabling low-temperature aqueous Zn batteries. ACS Energy Lett. 6, 2704–2712 (2021).

    Article  Google Scholar 

  40. Brooksby, P. A. & Fawcett, W. R. Infrared (ATR) study of hydrogen bonding in solutions containing water and ethylene carbonate. J. Phys. Chem. A 104, 8307–8314 (2000).

    Article  Google Scholar 

  41. Wolke, C. T. et al. Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354, 1131 (2016).

    Article  Google Scholar 

  42. Wu, X. et al. Diffusion-free Grotthuss topochemistry for high-rate and long-life proton batteries. Nat. Energy 4, 123–130 (2019).

    Article  Google Scholar 

  43. Sadakane, M. & Steckhan, E. Electrochemical properties of polyoxometalates as electrocatalysts. Chem. Rev. 98, 219–238 (1998).

    Article  Google Scholar 

  44. Park, M. et al. A high voltage aqueous zinc–organic hybrid flow battery. Adv. Energy Mater. 9, 1900694 (2019).

    Article  Google Scholar 

  45. Sum, E. & Skyllas-Kazacos, M. A study of the V(II)/V(III) redox couple for redox flow cell applications. J. Power Sources 15, 179–190 (1985).

    Article  Google Scholar 

  46. Liu, T., Wei, X., Nie, Z., Sprenkle, V. & Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2016).

    Article  Google Scholar 

  47. Prenzler, P. D., Boskovic, C., Bond, A. M. & Wedd, A. G. Coupled electron- and proton-transfer processes in the reduction of α-[P2W18O62]6- and α-[H2W12O40]6- as revealed by simulation of cyclic voltammograms. Anal. Chem. 71, 3650–3656 (1999).

    Article  Google Scholar 

  48. Yao, Y., Lei, J., Shi, Y., Ai, F. & Lu, Y.-C. Assessment methods and performance metrics for redox flow batteries. Nat. Energy 6, 582–588 (2021).

    Article  Google Scholar 

  49. Goulet, M.-A. & Aziz, M. J. Flow battery molecular reactant stability determined by symmetric cell cycling methods. J. Electrochem. Soc. 165, A1466–A1477 (2018).

    Article  Google Scholar 

  50. Jin, S. et al. Near neutral pH redox flow battery with low permeability and long-lifetime phosphonated viologen active species. Adv. Energy Mater. 10, 2000100 (2020).

    Article  Google Scholar 

  51. Kwabi, D. G. et al. Alkaline quinone flow battery with long lifetime at pH 12. Joule 2, 1894–1906 (2018).

    Article  Google Scholar 

  52. Sun, C., Chen, J., Zhang, H., Han, X. & Luo, Q. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sources 195, 890–897 (2010).

    Article  Google Scholar 

  53. Feng, R. et al. Reversible ketone hydrogenation and dehydrogenation for aqueous organic redox flow batteries. Science 372, 836–840 (2021).

    Article  Google Scholar 

  54. Jin, S. et al. A water-miscible quinone flow battery with high volumetric capacity and energy density. ACS Energy Lett. 4, 1342–1348 (2019).

    Article  Google Scholar 

  55. Marcus, R. A. On the theory of oxidation‐reduction reactions involving electron transfer. I. J. Chem. Phys. 24, 966–978 (1956).

    Article  Google Scholar 

  56. Huang, B. et al. Cation-dependent interfacial structures and kinetics for outer-sphere electron-transfer reactions. J. Phys. Chem. C. 125, 4397–4411 (2021).

    Article  Google Scholar 

  57. Huang, B. et al. Cation- and pH-dependent hydrogen evolution and oxidation reaction kinetics. JACS Au 1, 1674–1687 (2021).

    Article  Google Scholar 

  58. Marx, D., Tuckerman, M. E., Hutter, J. & Parrinello, M. The nature of the hydrated excess proton in water. Nature 397, 601–604 (1999).

    Article  Google Scholar 

  59. Day, T. J. F., Schmitt, U. W. & Voth, G. A. The mechanism of hydrated proton transport in water. J. Am. Chem. Soc. 122, 12027–12028 (2000).

    Article  Google Scholar 

  60. Filowitz, M., Ho, R. K. C., Klemperer, W. G. & Shum, W. Oxygen-17 nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution. Inorg. Chem. 18, 93–103 (1979).

    Article  Google Scholar 

  61. Mbomekalle, I.-M., Lu, Y. W., Keita, B. & Nadjo, L. Simple, high yield and reagent-saving synthesis of pure α-K6P2W18O62·14H2O. Inorg. Chem. Commun. 7, 86–90 (2004).

    Article  Google Scholar 

  62. Kato, C. et al. Quick and selective synthesis of Li6[α-P2W18O62]·28H2O soluble in various organic solvents. Dalton Trans 42, 11363–11366 (2013).

    Article  Google Scholar 

  63. Chen, J. J. Polyoxometalate Related Redox Flow Batteries (Univ. of Michigan, 2017).

  64. Kozhevnikov, I. V., Sinnema, A., Jansen, R. J. J. & van Bekkum, H. 17O NMR determination of proton sites in solid heteropoly acid H3PW12O40.31P, 29Si and 17O NMR, FT-IR and XRD study of H3PW12O40 and H4SiW12O40 supported on carbon. Catal. Lett. 27, 187–197 (1994).

    Article  Google Scholar 

  65. Herranz, J., Garsuch, A. & Gasteiger, H. A. Using rotating ring disc electrode voltammetry to quantify the superoxide radical stability of aprotic Li–air battery electrolytes. J. Phys. Chem. C. 116, 19084–19094 (2012).

    Article  Google Scholar 

  66. Lu, Y.-C., He, Q. & Gasteiger, H. A. Probing the lithium–sulfur redox reactions: a rotating-ring disk electrode study. J. Phys. Chem. C. 118, 5733–5741 (2014).

    Article  Google Scholar 

  67. Bard, A. J. & Faulkner, L. R. Electrochemical Methods Fundamentals and Applications Vol. 2 (Wiley, 2001).

  68. Xie, J., Liang, Z. & Lu, Y.-C. Molecular crowding electrolytes for high-voltage aqueous batteries. Nat. Mater. 19, 1006–1011 (2020).

    Article  Google Scholar 

  69. Orita, A., Verde, M. G., Sakai, M. & Meng, Y. S. A biomimetic redox flow battery based on flavin mononucleotide. Nat. Commun. 7, 13230 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The work described in this paper was supported by a grant from National Natural Science Foundation of China (51922114, received by Y.-C.L.) and a grant from the Research Grant Council (RGC) of the Hong Kong Special Administrative Region, China (project number T23-601/17-R, received by Y.-C.L.).

Author information

Authors and Affiliations

Authors

Contributions

F.A. and Y.-C.L. conceived the project, analysed the data and wrote the manuscript. Z.W. designed the flow battery cell. F.A. and Q.Z. conducted RRDE and UV–visible measurements. F. A. and Z.L. conducted OEMS measurements. F. A. and N.-C.L. conducted HPOM synthesis.

Corresponding author

Correspondence to Yi-Chun Lu.

Ethics declarations

Competing interests

F.A. and Y.-C.L. are inventors with a patent application (US application number 17/681,016) on the flow battery electrolytes described herein. Z.W., Q.Z., Z.L. and N.-C.L. declare no competing interests.

Peer review

Peer review information

Nature Energy thanks Travis Anderson and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–32, Tables 1–5 and Note 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ai, F., Wang, Z., Lai, NC. et al. Heteropoly acid negolytes for high-power-density aqueous redox flow batteries at low temperatures. Nat Energy 7, 417–426 (2022). https://doi.org/10.1038/s41560-022-01011-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41560-022-01011-y

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing