Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A unifying framework for studying and managing climate-driven rates of ecological change

Abstract

During the Anthropocene and other eras of rapidly changing climates, rates of change of ecological systems can be described as fast, slow or abrupt. Fast ecological responses closely track climate change, slow responses substantively lag climate forcing, causing disequilibria and reduced fitness, and abrupt responses are characterized by nonlinear, threshold-type responses at rates that are large relative to background variability and forcing. All three kinds of climate-driven ecological dynamics are well documented in contemporary studies, palaeoecology and invasion biology. This fast–slow–abrupt conceptual framework helps unify a bifurcated climate-change literature, which tends to separately consider the ecological risks posed by slow or abrupt ecological dynamics. Given the prospect of ongoing climate change for the next several decades to centuries of the Anthropocene and wide variations in ecological rates of change, the theory and practice of managing ecological systems should shift attention from target states to target rates. A rates-focused framework broadens the strategic menu for managers to include options to both slow and accelerate ecological rates of change, seeks to reduce mismatch among climate and ecological rates of change, and provides a unified conceptual framework for tackling the distinct risks associated with fast, slow and abrupt ecological rates of change.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Past, present and future temperature changes and the temporal scale of biological responses.
Fig. 2: Processes governing the ecological timescales of response to climate change.
Fig. 3: In a rates-based framework for designing management strategies, the key consideration is the rates of climate forcing relative to rates of response in ecological systems.

ARC Center of Excellence for Coral Reef Studies (b); Jens-Christian Svenning (c); Stephen T. Jackson, Southwest Climate Adaptation Science Center, US Geological Survey (d).

References

  1. Steffen, W., Broadgate, W., Deutsch, L., Gaffney, O. & Ludwig, C. The trajectory of the Anthropocene: The Great Acceleration. Anthr. Rev. 2, 81–98 (2015).

    Google Scholar 

  2. Steffen, W., Grinevald, J., Crutzen, P. & McNeill, J. The Anthropocene: conceptual and historical perspectives. Phil. Trans. R. Soc. A 369, 842–867 (2011).

    PubMed  Google Scholar 

  3. Steinbauer, M. J. et al. Accelerated increase in plant species richness on mountain summits is linked to warming. Nature 556, 231–234 (2018).

    CAS  PubMed  Google Scholar 

  4. McInerney, F. A. & Wing, S. L. The Paleocene-Eocene Thermal Maximum: a perturbation of carbon cycle, climate, and biosphere with implications for the future. Annu. Rev. Earth Planet. Sci. 39, 489–516 (2011).

    CAS  Google Scholar 

  5. Herrero, C., García-Olivares, A. & Pelegrí, J. L. Impact of anthropogenic CO2 on the next glacial cycle. Clim. Change 122, 283–298 (2014).

    CAS  Google Scholar 

  6. Clark, P. U. et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 6, 360–369 (2016).

    Google Scholar 

  7. Berger, A. & Loutre, M. F. An exceptionally long interglacial ahead? Science 297, 1287–1288 (2002).

    CAS  PubMed  Google Scholar 

  8. Burke, K. D. et al. Pliocene and Eocene provide best analogues for near-future climates. Proc. Natl Acad. Sci. USA 115, 13288–13293 (2018).

    CAS  PubMed  Google Scholar 

  9. Fisichelli, N. A., Schuurman, G. W. & Hoffman, C. H. Is ‘resilience’ maladaptive? Towards an accurate lexicon for climate change adaptation. Environ. Manag. 57, 753–758 (2016).

    Google Scholar 

  10. Prober, S. M., Doerr, V. A. J., Broadhurst, L. M., Williams, K. J. & Dickson, F. Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol. Monogr. 89, e01333 (2019).

    Google Scholar 

  11. Scheffers, B. R. & Pecl, G. Persecuting, protecting or ignoring biodiversity under climate change. Nat. Clim. Change 9, 581–586 (2019).

    Google Scholar 

  12. Barnosky, A. D. et al. Merging paleobiology with conservation biology to guide the future of terrestrial ecosystems. Science 355, eaah4787 (2017).

    PubMed  Google Scholar 

  13. Hughes, F. M. R., Adams, W. M. & Stroh, P. A. When is open-endedness desirable in restoration projects? Restor. Ecol. 20, 291–295 (2012).

    Google Scholar 

  14. Williams, J. W. & Burke, K. in Climate Change and Biodiversity: Transforming the Biosphere (eds Lovejoy, T & Hannah, L.) 128–141 (Yale Univ. Press, 2019).

  15. Webb, T. III. Is vegetation in equilibrium with climate? How to interpret late-Quaternary pollen data. Vegetatio 67, 75–91 (1986).

    Google Scholar 

  16. Blonder, B. et al. Predictability in community dynamics. Ecol. Lett. 20, 293–306 (2017).

    PubMed  Google Scholar 

  17. Svenning, J.-C. & Sandel, B. Disequilibrium vegetation dynamics under future climate change. Am. J. Bot. 100, 1266–1286 (2013).

    PubMed  Google Scholar 

  18. Huntley, B. et al. Climatic disequilibrium threatens conservation priority forests. Conserv. Lett. 11, e12349 (2018).

    Google Scholar 

  19. Bertrand, R. et al. Ecological constraints increase the climatic debt in forests. Nat. Commun. 7, 12643 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zimova, M., Mills, L. S. & Nowak, J. J. High fitness costs of climate change-induced camouflage mismatch. Ecol. Lett. 19, 299–307 (2016).

    PubMed  Google Scholar 

  21. Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).

    PubMed  PubMed Central  Google Scholar 

  22. Davis, M. B. & Shaw, R. G. Range shifts and adaptive responses to Quaternary climate change. Science 292, 673–679 (2001).

    CAS  PubMed  Google Scholar 

  23. Ratajczak, Z. et al. Abrupt change in ecological systems: inference and diagnosis. Trends Ecol. Evol. 33, 513–526 (2018).

    PubMed  Google Scholar 

  24. Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).

    CAS  PubMed  Google Scholar 

  25. Williams, J. W., Blois, J. L. & Shuman, B. N. Extrinsic and intrinsic forcing of abrupt ecological change: case studies from the late Quaternary. J. Ecol. 99, 664–677 (2011).

    Google Scholar 

  26. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    CAS  PubMed  Google Scholar 

  27. Scheffer, M. et al. Anticipating critical transitions. Science 338, 344–348 (2012).

    CAS  PubMed  Google Scholar 

  28. Scheffer, M., Hirota, M., Holmgren, M., Van Nes, E. H. & Chapin, F. S. Thresholds for boreal biome transitions. Proc. Natl Acad. Sci. USA 109, 21384–21389 (2012).

    CAS  PubMed  Google Scholar 

  29. Boettiger, C. & Hastings, A. Tipping points: from patterns to predictions. Nature 493, 157–158 (2013).

    CAS  PubMed  Google Scholar 

  30. Boettiger, C., Ross, N. & Hastings, A. Early warning signals: the charted and uncharted territories. Theor. Ecol. 6, 255–264 (2013).

    Google Scholar 

  31. Lenton, T. M. et al. Climate tipping points — too risky to bet against. Nature 575, 593–595 (2019).

    Google Scholar 

  32. Devictor, V., Julliard, R., Couvet, D. & Jiguet, F. Birds are tracking climate warming, but not fast enough. Proc. R. Soc. B 275, 2743–2748 (2008).

    PubMed  Google Scholar 

  33. Dakos, V., Carpenter, S. R., van Nes, E. H. & Scheffer, M. Resilience indicators: prospects and limitations for early warnings of regime shifts. Phil. Trans. R. Soc. B 370, 20130263 (2014).

    Google Scholar 

  34. IPCC in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Summary for Policymakers (Cambridge Univ. Press, 2013).

  35. Pecl, G. T. et al. Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214 (2017).

    PubMed  Google Scholar 

  36. Kudo, G. & Ida, T. Y. Early onset of spring increases the phenological mismatch between plants and pollinators. Ecology 94, 2311–2320 (2013).

    PubMed  Google Scholar 

  37. Körner, C. & Basler, D. Phenology under global warming. Science 327, 1461–1462 (2010).

    PubMed  Google Scholar 

  38. Seddon, A. W. R., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).

    CAS  PubMed  Google Scholar 

  39. Chen, I. C., Hill, J. K., Ohlemüller, R., Roy, D. B. & Thomas, C. D. Rapid range shifts of species associated with high levels of climate warming. Science 333, 1024–1026 (2011).

    CAS  PubMed  Google Scholar 

  40. Lenoir, J., Gégout, J. C., Marquet, P. A., de Ruffray, P. & Brisse, H. A significant upward shift in plant species optimum elevation during the 20th Century. Science 320, 1768–1771 (2008).

    CAS  PubMed  Google Scholar 

  41. Bellemare, J. & Deeg, C. Horticultural escape and naturalization of Magnolia tripetala in western Massachusetts: biogeographic context and possible relationship to recent climate change. Rhodora 117, 371–383 (2015).

    Google Scholar 

  42. Blowes, S. A. et al. The geography of biodiversity change in marine and terrestrial assemblages. Science 366, 339–345 (2019).

    CAS  PubMed  Google Scholar 

  43. Dornelas, M. et al. Assemblage time series reveal biodiversity change but not systematic loss. Science 344, 296–299 (2014).

    CAS  PubMed  Google Scholar 

  44. Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).

    Google Scholar 

  45. Albright, T. P. et al. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens. Environ. 115, 245–254 (2011).

    Google Scholar 

  46. Cazelles, K. et al. Homogenization of freshwater lakes: recent compositional shifts in fish communities are explained by gamefish movement and not climate change. Glob. Change Biol. 25, 4222–4233 (2019).

    Google Scholar 

  47. Guo, F., Lenoir, J. & Bonebrake, T. C. Land-use change interacts with climate to determine elevational species redistribution. Nat. Commun. 9, 1315 (2018).

    PubMed  PubMed Central  Google Scholar 

  48. Abatzoglou, J. T., Dobrowski, S. Z. & Parks, S. A. Multivariate climate departures have outpaced univariate changes across global lands. Sci. Rep. 10, 3891 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. VanDerWal, J. et al. Focus on poleward shifts in species’ distribution underestimates the fingerprint of climate change. Nat. Clim. Change 3, 239–243 (2013).

    Google Scholar 

  50. Ordonez, A., Williams, J. W. & Svenning, J. C. Mapping climatic mechanisms likely to favour the emergence of novel communities. Nat. Clim. Change 6, 1104–1109 (2016).

    Google Scholar 

  51. Hof, C., Levinsky, I., Araújo, M. B. & Rahbek, C. Rethinking species’ ability to cope with rapid climate change. Glob. Change Biol. 17, 2987–2990 (2011).

    Google Scholar 

  52. Brown, S. C., Wigley, T. M. L., Otto-Bliesner, B. L., Rahbek, C. & Fordham, D. A. Persistent Quaternary climate refugia are hospices for biodiversity in the Anthropocene. Nat. Clim. Change 10, 244–248 (2020).

    Google Scholar 

  53. Buizert, C. et al. Greenland temperature response to climate forcing during the last deglaciation. Science 345, 1177–1180 (2014).

    CAS  PubMed  Google Scholar 

  54. Steffensen, J. P. et al. High-resolution Greenland ice core data show abrupt climate change happens in few years. Science 321, 680–684 (2008).

    CAS  PubMed  Google Scholar 

  55. Jackson, S. T. & Overpeck, J. T. Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology 26 (Suppl.), 194–220 (2000).

    Google Scholar 

  56. Prentice, I. C., Bartlein, P. J. & Webb, T. III. Vegetation and climate change in eastern North America since the last glacial maximum. Ecology 72, 2038–2056 (1991).

    Google Scholar 

  57. Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).

    Google Scholar 

  58. Ordonez, A. & Williams, J. W. Climatic and biotic velocities for woody taxa distributions over the last 16 000 years in eastern North America. Ecol. Lett. 16, 773–781 (2013).

    PubMed  Google Scholar 

  59. Williams, J. W., Post, D. M., Cwynar, L. C., Lotter, A. F. & Levesque, A. J. Rapid and widespread vegetation responses to past climate change in the North Atlantic region. Geology 30, 971–974 (2002).

    CAS  Google Scholar 

  60. Tinner, W. & Lotter, A. F. Central European vegetation response to abrupt climate change at 8.2 ka. Geology 29, 551–554 (2001).

    Google Scholar 

  61. Juggins, S. Quantitative reconstructions in paleolimnology: new paradigm or sick science? Quat. Sci. Rev. 64, 20–32 (2013).

    Google Scholar 

  62. Ammann, B. et al. Responses to rapid warming at Termination 1a at Gerzensee (Central Europe): primary succession, albedo, soils, lake development, and ecological interactions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 111–131 (2013).

    Google Scholar 

  63. Ammann, B., von Grafenstein, U. & van Raden, U. J. Biotic responses to rapid warming about 14,685 yr BP: introduction to a case study at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 3–12 (2013).

    Google Scholar 

  64. Cotto, O. et al. A dynamic eco-evolutionary model predicts slow response of alpine plants to climate warming. Nat. Commun. 8, 15399 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Petitpierre, B. et al. Climatic niche shifts are rare among terrestrial plant invaders. Science 335, 1344–1348 (2012).

    CAS  PubMed  Google Scholar 

  66. Hui, C., Roura-Pascual, N., Brotons, L., Robinson, R. A. & Evans, K. L. Flexible dispersal strategies in native and non-native ranges: environmental quality and the ‘good–stay, bad–disperse’ rule. Ecography 35, 1024–1032 (2012).

    Google Scholar 

  67. Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).

    Google Scholar 

  68. Jackson, S. T., Betancourt, J. L., Booth, R. K. & Gray, S. T. Ecology and the ratchet of events: climate variability, niche dimensions, and species distributions. Proc. Natl Acad. Sci. USA 106, 19685–19692 (2009).

    CAS  PubMed  Google Scholar 

  69. Hughes, T. P. et al. Global warming impairs stock–recruitment dynamics of corals. Nature 568, 387–390 (2019).

    CAS  PubMed  Google Scholar 

  70. Stevens-Rumann, C. S. et al. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 21, 243–252 (2018).

    PubMed  Google Scholar 

  71. Keeley, J. E., van Mantgem, P. & Falk, D. A. Fire, climate and changing forests. Nat. Plants 5, 774–775 (2019).

    PubMed  Google Scholar 

  72. Raffa, K. F., Powell, E. N. & Townsend, P. A. Temperature-driven range expansion of an irruptive insect heightened by weakly coevolved plant defenses. Proc. Natl Acad. Sci. USA 110, 2193–2198 (2013).

    CAS  PubMed  Google Scholar 

  73. Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83 (2018).

    CAS  PubMed  Google Scholar 

  74. Feeley, K. J. et al. Upslope migration of Andean trees. J. Biogeogr. 38, 783–791 (2011).

    Google Scholar 

  75. Ricklefs, R. E. & Latham, R. E. Intercontinental correlation of geographical ranges suggests stasis in ecological traits of relict genera of temperature perennial herbs. Am. Nat. 139, 1305–1321 (1992).

    Google Scholar 

  76. McCain, C. M. & King, S. R. B. Body size and activity times mediate mammalian responses to climate change. Glob. Change Biol. 20, 1760–1769 (2014).

    Google Scholar 

  77. Pither, J., Pickles, B. J., Simard, S. W., Ordonez, A. & Williams, J. W. Below-ground biotic interactions moderated the postglacial range dynamics of trees. New Phytol. 220, 1148–1160 (2018).

    PubMed  Google Scholar 

  78. Lawler, J. J. & Olden, J. D. Reframing the debate over assisted colonization. Front. Ecol. Environ. 9, 569–574 (2011).

    Google Scholar 

  79. Schwartz, M. W. et al. Managed relocation: integrating the scientific, regulatory, and ethical challenges. BioScience 62, 732–743 (2012).

    Google Scholar 

  80. Van der Veken, S., Hermy, M., Vellend, M., Knapen, A. & Verheyen, K. Garden plants get a head start on climate change. Front. Ecol. Environ. 6, 212–216 (2008).

    Google Scholar 

  81. Svenning, J.-C. & Skov, F. Limited filling of the potential range in European tree species. Ecol. Lett. 7, 565–573 (2004).

    Google Scholar 

  82. Sax, D. F., Early, R. & Bellemare, J. Niche syndromes, species extinction risks, and management under climate change. Trends Ecol. Evol. 28, 517–523 (2013).

    PubMed  Google Scholar 

  83. Kuussaari, M. et al. Extinction debt: a challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).

    PubMed  Google Scholar 

  84. Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Google Scholar 

  85. Wheeler, H. C., Høye, T. T., Schmidt, N. M., Svenning, J.-C. & Forchhammer, M. C. Phenological mismatch with abiotic conditions—implications for flowering in Arctic plants. Ecology 96, 775–787 (2015).

    PubMed  Google Scholar 

  86. Beard, K. H., Kelsey, K. C., Leffler, A. J. & Welker, J. M. The missing angle: ecosystem consequences of phenological mismatch. Trends Ecol. Evol. 34, 885–888 (2019).

    PubMed  Google Scholar 

  87. Chamberlain, C. J., Cook, B. I., de Cortazar Atauri, I. G. & Wolkovich, E. M. Rethinking false spring risk. Glob. Change Biol. 25, 2209–2220 (2019).

    Google Scholar 

  88. Wolkovich, E. M., Cook, B. I., McLauchlan, K. K. & Davies, T. J. Temporal ecology in the Anthropocene. Ecol. Lett. 17, 1365–1379 (2014).

    CAS  PubMed  Google Scholar 

  89. Pagel, J. et al. Mismatches between demographic niches and geographic distributions are strongest in poorly dispersed and highly persistent plant species. Proc. Natl Acad. Sci. USA 117, 3663–3669 (2020).

    CAS  PubMed  Google Scholar 

  90. Komatsu, K. J. et al. Global change effects on plant communities are magnified by time and the number of global change factors imposed. Proc. Natl Acad. Sci. USA 116, 17867–17873 (2019).

    CAS  PubMed  Google Scholar 

  91. Fadrique, B. et al. Widespread but heterogeneous responses of Andean forests to climate change. Nature 564, 207–212 (2018).

    CAS  PubMed  Google Scholar 

  92. Talluto, M. V., Boulangeat, I., Vissault, S., Thuiller, W. & Gravel, D. Extinction debt and colonization credit delay range shifts of eastern North American trees. Nat. Ecol. Evol. 1, 0182 (2017).

    Google Scholar 

  93. Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Change Biol. 18, 1042–1052 (2012).

    Google Scholar 

  94. Bertrand, R. et al. Changes in plant community composition lag behind climate warming in lowland forests. Nature 479, 517–520 (2011).

    CAS  PubMed  Google Scholar 

  95. Bocsi, T. et al. Plants’ native distributions do not reflect climatic tolerance. Divers. Distrib. 22, 615–624 (2016).

    Google Scholar 

  96. Early, R. & Sax, D. F. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 23, 1356–1365 (2014).

    Google Scholar 

  97. Perret, D. L., Leslie, A. B. & Sax, D. F. Naturalized distributions show that climatic disequilibrium is structured by niche size in pines (Pinus L.). Glob. Ecol. Biogeogr. 28, 429–441 (2019).

    Google Scholar 

  98. Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).

    PubMed  Google Scholar 

  99. Knight, C. A. et al. Community assembly and climate mismatch in Late-Quaternary eastern North American pollen assemblages. Am. Nat. 195, 166–180 (2020).

    PubMed  Google Scholar 

  100. Butterfield, B. J., Anderson, R. S., Holmgren, C. A. & Betancourt, J. L. Extinction debt and delayed colonization have had comparable but unique effects on plant community–climate lags since the Last Glacial Maximum. Glob. Ecol. Biogeogr. 28, 1067–1077 (2019).

    Google Scholar 

  101. Graham, R. W. et al. Timing and causes of a middle Holocene mammoth extinction on St. Paul Island, Alaska. Proc. Natl Acad. Sci. USA 113, 9310–9314 (2016).

    CAS  PubMed  Google Scholar 

  102. Woods, K. D. & Davis, M. B. Paleoecology of range limits: beech in the Upper Peninsula of Michigan. Ecology 70, 681–696 (1989).

    Google Scholar 

  103. Jackson, S. T. et al. Inferring local to regional changes in forest composition from Holocene macrofossils and pollen of a small lake in central Upper Michigan. Quat. Sci. Rev. 98, 60–73 (2014).

    Google Scholar 

  104. Seeley, M., Goring, S. & Williams, J. W. Testing hypotheses about environmental and dispersal controls on Fagus grandifolia distributions in the upper Midwest Great Lakes region. J. Biogeogr. 46, 405–419 (2019).

    Google Scholar 

  105. Birks, H. J. B. & Birks, H. H. Biological responses to rapid climate change at the Younger Dryas—Holocene transition at Kråkenes, western Norway. Holocene 18, 19–30 (2008).

    Google Scholar 

  106. Ammann, B. et al. Vegetation responses to rapid warming and to minor climatic fluctuations during the Late-Glacial Interstadial (GI-1) at Gerzensee (Switzerland). Palaeogeogr. Palaeoclimatol. Palaeoecol. 391, 40–59 (2013).

    Google Scholar 

  107. Svenning, J.-C. & Skov, F. Could the tree diversity pattern in Europe be generated by postglacial dispersal limitation? Ecol. Lett. 10, 453–460 (2007).

    PubMed  Google Scholar 

  108. Sandel, B. et al. The influence of late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).

    CAS  PubMed  Google Scholar 

  109. Feng, G. et al. Species and phylogenetic endemism in angiosperm trees across the Northern Hemisphere are jointly shaped by modern climate and glacial–interglacial climate change. Glob. Ecol. Biogeogr. 28, 1393–1402 (2019).

    Google Scholar 

  110. Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

    Google Scholar 

  111. Sakai, A. K. et al. The population biology of invasive species. Annu. Rev. Ecol. Syst. 32, 305–332 (2001).

    Google Scholar 

  112. Hui, C. & Richardson, D. M. Invasion Dynamics (Oxford Univ. Press, 2017).

  113. Kowarik, I. in Plant Invasions. General Aspects and Special Problems (eds Pysek, P. et al.) 15–39 (SPB Academic Publishing, 1995).

  114. Bruce, K. A., Cameron, G. N. & Harcombe, P. A. Initiation of a new woodland type on the Texas Coastal Prairie by the Chinese tallow tree (Sapium sebiferum (L.) Roxb.). Bull. Torrey Bot. Club 122, 215–225 (1995).

    Google Scholar 

  115. Castro, S. A., Figueroa, J. A., Muñoz-Schick, M. & Jaksic, F. M. Minimum residence time, biogeographical origin, and life cycle as determinants of the geographical extent of naturalized plants in continental Chile. Divers. Distrib. 11, 183–191 (2005).

    Google Scholar 

  116. Hoffmann, J. H. & Moran, V. C. The invasive weed Sesbania punicea in South Africa and prospects for its biological control. S. Afr. J. Sci. 84, 740–472 (1988).

    Google Scholar 

  117. Byers, J. E. et al. Invasion expansion: time since introduction best predicts global ranges of marine invaders. Sci. Rep. 5, 12436 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Phillips, M. L., Murray, B. R., Leishman, M. R. & Ingram, R. The naturalization to invasion transition: are there introduction-history correlates of invasiveness in exotic plants of Australia? Austral Ecol. 35, 695–703 (2010).

    Google Scholar 

  119. Scott, J. K. & Panetta, F. D. Predicting the Australian weed status of southern African plants. J. Biogeogr. 20, 87–93 (1993).

    Google Scholar 

  120. Arroyo, M. T. K., Rozzi, R., Simonetti, J. A., Marquet, P. & Sallaberry, M. in Hotspots: Earth’s Biologically Richest and Most Endangered Terrestrial Ecosystems (eds Mittermeier, R. A. et al.) 161–171 (Cemex, Conservation International, 1999).

  121. Zarnetske, P. L., Skelly, D. K. & Urban, M. C. Biotic multipliers of climate change. Science 336, 1516–1518 (2012).

    CAS  PubMed  Google Scholar 

  122. Ordonez, A. & Williams, J. W. Projected climate reshuffling based on multivariate climate-availability, climate-analog, and climate-velocity analyses: implications for community disaggregation. Clim. Change 119, 659–675 (2013).

    Google Scholar 

  123. Zohner, C. M. et al. Late-spring frost risk between 1959 and 2017 decreased in North America but increased in Europe and Asia. Proc. Natl Acad. Sci. USA 117, 12192–12200 (2020).

    CAS  PubMed  Google Scholar 

  124. Renner, S. S. & Zohner, C. M. Climate change and phenological mismatch in trophic interactions among plants, insects, and vertebrates. Annu. Rev. Ecol. Evol. Syst. 49, 165–182 (2018).

    Google Scholar 

  125. Turner, M. G. et al. Climate change, ecosystems, and abrupt change: science priorities. Phil. Trans. R. Soc. B 375, 20190105 (2020).

    PubMed  Google Scholar 

  126. Rietkerk, M., Dekker, S. C., de Ruiter, P. C. & van de Koppel, J. Self-organized patchiness and catastrophic shifts in ecosystems. Science 305, 1926–1929 (2004).

    CAS  PubMed  Google Scholar 

  127. Calder, W. J. & Shuman, B. N. Extensive wildfires, climate change, and an abrupt state change in subalpine ribbon forests, Colorado. Ecology 98, 2585–2600 (2017).

    PubMed  Google Scholar 

  128. Shuman, B. N., Marsicek, J., Oswald, W. W. & Foster, D. R. Predictable hydrological and ecological responses to Holocene North Atlantic variability. Proc. Natl Acad. Sci. USA 116, 5985–5990 (2019).

    CAS  PubMed  Google Scholar 

  129. Allison, T. D., Moeller, R. E. & Davis, M. B. Pollen in laminated sediments provides evidence of mid-Holocene forest pathogen outbreak. Ecology 67, 1101–1105 (1986).

    Google Scholar 

  130. Ramiadantsoa, T., Stegner, M. A., Williams, J. W. & Ives, A. R. The potential role of intrinsic processes in generating abrupt and quasi-synchronous tree declines during the Holocene. Ecology 100, e02579 (2019).

    PubMed  Google Scholar 

  131. Seddon, A. W. R., Froyd, C. A., Witkowski, A. & Willis, K. J. A quantitative framework for analysis of regime shifts in a Galápagos coastal lagoon. Ecology 95, 3046–3055 (2014).

    Google Scholar 

  132. Gray, S. T., Betancourt, J. L., Jackson, S. J. & Eddy, R. G. Role of multidecadal climatic variability in a range extension of pinyon pine. Ecology 87, 1124–1130 (2006).

    PubMed  Google Scholar 

  133. Lyford, M. E., Jackson, S. T., Betancourt, J. L. & Gray, S. T. Influence of landscape structure and climate variability on a late Holocene plant migration. Ecol. Monogr. 73, 567–583 (2003).

    Google Scholar 

  134. Tinner, W. & Lotter, A. F. Holocene expansions of Fagus silvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quat. Sci. Rev. 25, 526–549 (2006).

    Google Scholar 

  135. Saltré, F. A. et al. Climate or migration: what limited European beech post-glacial colonization? Glob. Ecol. Biogeogr. 22, 1217–1227 (2013).

    Google Scholar 

  136. Ruosch, M. et al. Past and future evolution of Abies alba forests in Europe – comparison of a dynamic vegetation model with palaeo data and observations. Glob. Change Biol. 22, 727–740 (2016).

    Google Scholar 

  137. Danz, N. P., Frelich, L. E., Reich, P. B. & Niemi, G. J. Do vegetation boundaries display smooth or abrupt spatial transitions along environmental gradients? Evidence from the prairie–forest biome boundary of historic Minnesota, USA. J. Veg. Sci. 24, 1129–1140 (2013).

    Google Scholar 

  138. Grimm, E. C. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecol. Monogr. 54, 291–311 (1984).

    Google Scholar 

  139. Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).

    CAS  PubMed  Google Scholar 

  140. Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474 (2015).

    Google Scholar 

  141. Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Environ. 38, 1699–1712 (2015).

    PubMed  Google Scholar 

  142. Hansen, W. D. & Turner, M. G. Origins of abrupt change? Postfire subalpine conifer regeneration declines nonlinearly with warming and drying. Ecol. Monogr. 89, e01340 (2019).

    Google Scholar 

  143. Bestelmeyer, B. T. et al. Analysis of abrupt transitions in ecological systems. Ecosphere 2, 129 (2011).

    Google Scholar 

  144. Lenton, T. M. Early warning of climate tipping points. Nat. Clim. Change 1, 201–209 (2011).

    Google Scholar 

  145. Hastings, A. & Wysham, D. B. Regime shifts in ecological systems can occur with no warning. Ecol. Lett. 13, 464–472 (2010).

    PubMed  Google Scholar 

  146. Boettiger, C. & Hastings, A. Quantifying limits to detection of early warning for critical transitions. J. R. Soc. Interface 9, 2527–2539 (2012).

    PubMed  PubMed Central  Google Scholar 

  147. Millar, C. I., Stephenson, N. L. & Stephens, S. L. Climate change and forests of the future: managing in the face of uncertainty. Ecol. Appl. 17, 2145–2151 (2007).

    PubMed  Google Scholar 

  148. Choi, Y. D. Restoration ecology to the future: a call for new paradigm. Restor. Ecol. 15, 351–353 (2007).

    Google Scholar 

  149. Corlett, R. T. Restoration, reintroduction, and rewilding in a changing world. Trends Ecol. Evol. 31, 453–462 (2016).

    PubMed  Google Scholar 

  150. Sprugel, D. G. Disturbance, equilibrium, and environmental variability: what is ‘Natural’ vegetation in a changing environment? Biol. Conserv. 58, 1–18 (1991).

    Google Scholar 

  151. Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).

    CAS  PubMed  Google Scholar 

  152. Jackson, S. T. & Hobbs, R. J. Ecological restoration in the light of ecological history. Science 325, 567–569 (2009).

    CAS  PubMed  Google Scholar 

  153. Radeloff, V. C. et al. The rise of novelty in ecosystems. Ecol. Appl. 25, 2051–2068 (2015).

    PubMed  Google Scholar 

  154. Truitt, A. M. et al. What is novel about novel ecosystems: managing change in an ever-changing world. Environ. Manag. 55, 1217–1226 (2015).

    Google Scholar 

  155. Murcia, C. et al. A critique of the ‘novel ecosystem’ concept. Trends Ecol. Evol. 29, 548–553 (2014).

    PubMed  Google Scholar 

  156. Ricciardi, A. & Simberloff, D. Assisted colonization is not a viable conservation strategy. Trends Ecol. Evol. 24, 248–253 (2009).

    PubMed  Google Scholar 

  157. Svenning, J.-C. Proactive conservation and restoration of botanical diversity in the Anthropocene’s “rambunctious garden”. Am. J. Bot. 105, 963–966 (2018).

    PubMed  Google Scholar 

  158. Jepson, P. Recoverable Earth: a twenty-first century environmental narrative. Ambio 48, 123–130 (2019).

    PubMed  Google Scholar 

  159. Hoegh-Guldberg, O. et al. Assisted colonization and rapid climate change. Science 321, 345–346 (2008).

    CAS  PubMed  Google Scholar 

  160. van Oppen, M. J. H., Oliver, J. K., Putnam, H. M. & Gates, R. D. Building coral reef resilience through assisted evolution. Proc. Natl Acad. Sci. USA 112, 2307–2313 (2015).

    PubMed  Google Scholar 

  161. Willis, K. J. & MacDonald, G. M. Long-term ecological records and their relevance to climate change predictions for a warmer world. Annu. Rev. Ecol. Evol. Syst. 42, 267–287 (2011).

    Google Scholar 

  162. Farley, S. S., Dawson, A., Goring, S. J. & Williams, J. W. Situating ecology as a big data science: Current advances, challenges, and solutions. BioScience 68, 563–576 (2018).

    Google Scholar 

  163. Brown, T. B. et al. Using phenocams to monitor our changing Earth: toward a global phenocam network. Front. Ecol. Environ. 14, 84–93 (2016).

    Google Scholar 

  164. Clark, J. S. et al. Ecological forecasts: an emerging imperative. Science 293, 657–660 (2001).

    CAS  PubMed  Google Scholar 

  165. Dietze, M. C. et al. Iterative near-term ecological forecasting: needs, opportunities, and challenges. Proc. Natl Acad. Sci. USA 115, 1424–1432 (2018).

    CAS  PubMed  Google Scholar 

  166. Dietze, M. C. Ecological Forecasting (Princeton Univ. Press, 2017).

  167. Bauer, P., Thorpe, A. & Brunet, G. The quiet revolution of numerical weather prediction. Nature 525, 47–55 (2015).

    CAS  PubMed  Google Scholar 

  168. Thomas, S. M., Griffiths, S. W. & Ormerod, S. J. Adapting streams for climate change using riparian broadleaf trees and its consequences for stream salmonids. Freshw. Biol. 60, 64–77 (2015).

    Google Scholar 

  169. Greenwood, O., Mossman, H. L., Suggitt, A. J., Curtis, R. J. & Maclean, I. M. D. Using in situ management to conserve biodiversity under climate change. J. Appl. Ecol. 53, 885–894 (2016).

    PubMed  PubMed Central  Google Scholar 

  170. Carpenter, S. R. & Turner, M. G. Hares and tortoises: interactions of fast and slow variables in ecosystems. Ecosystems 3, 495–497 (2000).

    Google Scholar 

  171. Harris, I., Jones, P., Osborn, T. & Lister, D. Updated high-resolution grids of monthly climatic observations–the CRU TS3.10 dataset. Int. J. Climatol. 34, 623–642 (2014).

    Google Scholar 

  172. Bureau of Reclamation Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs (US Department of the Interior, Bureau of Reclamation, Technical Services Center, 2014).

  173. Delcourt, H. R. & Delcourt, P. A. Quaternary Ecology: A Paleoecological Perspective (Chapman & Hall, 1991).

  174. IPCC in Climate Change 2014: Impacts, Adaptation, and Vulnerability (eds Field, C. B. et al.) 1–32 (Cambridge Univ. Press, 2014).

  175. Bonan, G. B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320, 1444–1449 (2008).

    CAS  PubMed  Google Scholar 

  176. McDowell, P. F., Webb, T. III & Bartlein, P. J. in The Earth as Transformed by Human Action (eds Turner, B. L. II et al.) 143–162 (Cambridge Univ. Press, 1990).

  177. Delcourt, P. A. & Delcourt, H. R. Long-Term Forest Dynamics of the Temperate Zone: A Case Study of Late-Quaternary Forests in Eastern North America (Springer-Verlag, 1987).

  178. Turner, M. G., Dale, V. H. & Gardner, R. H. Predicting across scales: theory development and testing. Landsc. Ecol. 3, 245–252 (1989).

    Google Scholar 

  179. Kidwell, S. M. Biology in the Anthropocene: challenges and insights from young fossil records. Proc. Natl Acad. Sci. USA 12, 4922–4929 (2015).

    Google Scholar 

  180. National Research Council Abrupt Climate Change: Inevitable Surprises (National Academy Press, 2002).

  181. Rahmstorf, S. in Encyclopedia of Ocean Sciences (eds Steele, J. et al.) 1–6 (Academic Press, 2001).

  182. Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).

    CAS  PubMed  Google Scholar 

  183. Staver, A. C., Archibald, S. & Levin, S. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states. Ecology 92, 1063–1072 (2011).

    PubMed  Google Scholar 

  184. Andersen, T., Carstensen, J., Hernández-Garcia, E. & Duarte, C. M. Ecological thresholds and regime shifts: approaches to identification. Trends Ecol. Evol. 24, 49–57 (2009).

    PubMed  Google Scholar 

  185. Scheffer, M. & Carpenter, S. R. Catastrophic regime shifts in ecosystems: linking theory to observation. Trends Ecol. Evol. 18, 648–656 (2003).

    Google Scholar 

  186. Claussen, M. Late Quaternary vegetation-climate feedbacks. Clim. Past 5, 203–216 (2009).

    Google Scholar 

  187. Liu, Z., Notaro, M. & Gallimore, R. Indirect vegetation-soil moisture feedback with application to Holocene North Africa climate. Glob. Change Biol. 16, 1733–1743 (2010).

    Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Science Foundation (DEB-1855781) and the UW2020 initiative of the Wisconsin Alumni Research Foundation, a VILLUM Investigator project funded by VILLUM FONDEN (grant no.16549), and the Aarhus Universitets Forskningsfond Grant (AUFF-F-2018-7-8). This manuscript was improved by discussion with A. George and other members of the Williams Lab. The manuscript was improved by comments from T. Webb.

Author information

Authors and Affiliations

Authors

Contributions

J.W.W., A.O. and J.-C.S. jointly contributed to paper planning and discussion. J.W.W. and A.O. developed figures. J.W.W. led writing with contributions from A.O. and J.-C.S.

Corresponding author

Correspondence to John W. Williams.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Williams, J.W., Ordonez, A. & Svenning, JC. A unifying framework for studying and managing climate-driven rates of ecological change. Nat Ecol Evol 5, 17–26 (2021). https://doi.org/10.1038/s41559-020-01344-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41559-020-01344-5

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing