Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dissipative DNA nanotechnology

Abstract

DNA nanotechnology has emerged as a powerful tool to precisely design and control molecular circuits, machines and nanostructures. A major goal in this field is to build devices with life-like properties, such as directional motion, transport, communication and adaptation. Here we provide an overview of the nascent field of dissipative DNA nanotechnology, which aims at developing life-like systems by combining programmable nucleic-acid reactions with energy-dissipating processes. We first delineate the notions, terminology and characteristic features of dissipative DNA-based systems and then we survey DNA-based circuits, devices and materials whose functions are controlled by chemical fuels. We emphasize how energy consumption enables these systems to perform work and cyclical tasks, in contrast with DNA devices that operate without dissipative processes. The ability to take advantage of chemical fuel molecules brings dissipative DNA systems closer to the active molecular devices that exist in nature.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Nucleic-acid circuits operating via dissipative reactions.
Fig. 2: DNA walkers.
Fig. 3: Dissipative tweezer-like DNA-based switches.
Fig. 4: Ligand-binding DNA-based devices for the transient load and release of a molecular cargo.
Fig. 5: Dissipative DNA-based structures.
Fig. 6: ATP-fuelled activation and dynamization of a covalent and transient dsDNA-based chain growth.
Fig. 7: A route toward the design of active DNA materials based on the operation of microtubules.

References

  1. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Article  CAS  Google Scholar 

  2. Harroun, S. G. et al. Programmable DNA switches and their applications. Nanoscale 10, 4607–4641 (2018).

    CAS  PubMed  Article  Google Scholar 

  3. Simmel, F. C., Yurke, B. & Singh, H. R. Principles and applications of nucleic acid strand displacement reactions. Chem. Rev. 119, 6326–6369 (2019).

    CAS  PubMed  Article  Google Scholar 

  4. Ye, D., Zuo, X. & Fan, C. DNA nanotechnology-enabled interfacial engineering for biosensor development. Annu. Rev. Anal. Chem. 11, 171–195 (2018).

    CAS  Article  Google Scholar 

  5. Li, J., Green, A. A., Yan, H. & Fan, C. Engineering nucleic acid structures for programmable molecular circuitry and intracellular biocomputation. Nat. Chem. 9, 1056–1067 (2017).

    CAS  PubMed  Article  Google Scholar 

  6. Shin, J. –S. & Pierce, N. A. A synthetic DNA walker for molecular transport. J. Am. Chem. Soc. 126, 10834–10835 (2004).

    CAS  PubMed  Article  Google Scholar 

  7. Hu, Q., Li, H., Wang, L., Gu, H. & Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev. 119, 6459–6506 (2019).

    CAS  PubMed  Article  Google Scholar 

  8. Kim, T., Nam, K., Kim, Y. M., Yang, K. & Roh, Y. H. DNA-assisted smart nanocarriers: progress, challenges and opportunities. ACS Nano 15, 1942–1951 (2021).

    CAS  PubMed  Article  Google Scholar 

  9. Wang, F., Lu, C. –H. & Willner, I. From cascaded catalytic nucleic acids to enzyme-DNA nanostructures: controlling reactivity, sensing, logic operations, and assembly of complex structures. Chem. Rev. 114, 2881–2941 (2014).

    CAS  PubMed  Article  Google Scholar 

  10. Göpfrich, K., Platzman, I. & Spatz, J. P. Mastering complexity: towards bottom-up construction of multifunctional eukaryotic synthetic cells. Trends Biotechnol. 36, 938–951 (2018).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  11. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103–113 (2011).

    CAS  PubMed  Article  Google Scholar 

  12. Walsh, C. T., Tu, B. P. & Tang, Y. Eight kinetically stable but thermodynamically activated molecules that power cell metabolism. Chem. Rev. 118, 1460–1494 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. Astumian, R. D. Thermodynamics and kinetics of molecular motors. Biophys. J. 98, 2401–2409 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. Ananthakrishnan, R. & Ehrlicher, A. The forces behind cell movement. Int. J. Biol. Sci. 3, 303–317 (2007).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. Schliwa, M. & Woehlke, G. Molecular motors. Nature 422, 759–765 (2003).

    CAS  PubMed  Article  Google Scholar 

  16. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    CAS  PubMed  Article  Google Scholar 

  17. Seelig, G., Soloveichik, D., Zhang, D. Y. & Winfree, E. Enzyme-free nucleic acid logic circuits. Science 314, 1585–1588 (2006).

    CAS  PubMed  Article  Google Scholar 

  18. Zhang, D. Y., Hariadi, R. F., Choi, H. M. T. & Winfree, E. Integrating DNA strand-displacement circuitry with DNA tile self-assembly. Nat. Commun. 4, 1965 (2013).

    PubMed  Article  CAS  Google Scholar 

  19. Green, L. N., Amodio, A., Subramanian, H. K. K. S., Ricci, F. & Franco, E. pH-driven reversible self-assembly of micron-scale DNA scaffolds. Nano Lett. 17, 7283–7288 (2017).

    CAS  PubMed  Article  Google Scholar 

  20. Amodio, A., Del Grosso, E., Troina, A., Placidi, E. & Ricci, F. Remote electronic control of DNA-based reactions and nanostructures assembly. Nano Lett. 18, 2918–2923 (2018).

    CAS  PubMed  Article  Google Scholar 

  21. Amodio, A., Adedeji, A. F., Castronovo, M., Franco, E. & Ricci, F. pH-controlled assembly of DNA tiles. J. Am. Chem. Soc. 138, 12735–12738 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Ranallo, S., Sorrentino, D. & Ricci, F. Orthogonal regulation of DNA nanostructure self-assembly and disassembly using antibodies. Nat. Commun. 10, 5509 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    CAS  PubMed  Article  Google Scholar 

  24. Das, J., Gabrielli, L. & Prins, L. J. Chemically-fueled self-assembly in biology and chemistry. Angew. Chem. Int. Ed. 60, 20120–20143 (2021).

    CAS  Article  Google Scholar 

  25. Aprahamian, I. The future of molecular machines. ACS Cent. Sci. 6, 347–358 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Astumian, R. D. How molecular motors work - insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    CAS  PubMed  Article  Google Scholar 

  27. Ragazzon, G. & Prins, L. J. Energy consumption in chemical fuel-driven self-assembly. Nat. Nanotechnol. 13, 882–889 (2018).

    CAS  PubMed  Article  Google Scholar 

  28. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  29. Feng, Y. et al. Molecular pumps and motors. J. Am. Chem. Soc. 143, 5569–5591 (2021).

    CAS  PubMed  Article  Google Scholar 

  30. Novák, B. & Tyson, J. J. Design principles of biochemical oscillators. Nat. Rev. Mol. Cell Biol. 9, 981–991 (2008).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Elowitz, M. B. & Leibler, S. A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000).

    CAS  PubMed  Article  Google Scholar 

  32. Gardner, T. S., Cantor, C. R. & Collins, J. J. Construction of a genetic toggle switch in Escherichia coli. Nature 403, 339–342 (2000).

    CAS  PubMed  Article  Google Scholar 

  33. Kim, J., White, K. S. & Winfree, E. Construction of an in vitro bistable circuit from synthetic transcriptional switches. Mol. Syst. Biol. 2, 68 (2006).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. Kim, J. & Winfree, E. Synthetic in vitro transcriptional oscillators. Mol. Syst. Biol. 7, 465 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  35. Subsoontorn, P., Kim, J. & Winfree, E. Ensemble bayesian analysis of bistability in a synthetic transcriptional switch. ACS Synth. Biol. 1, 299–316 (2012).

    CAS  PubMed  Article  Google Scholar 

  36. Schaffter, S. W. & Schulman, R. Building in vitro transcriptional regulatory networks by successively integrating multiple functional circuit modules. Nat. Chem. 11, 829–838 (2019).

    CAS  PubMed  Article  Google Scholar 

  37. Franco, E. et al. Timing molecular motion and production with a synthetic transcriptional clock. Proc. Natl Acad. Sci USA 108, E784–E793 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Weitz, M. et al. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nat. Chem. 6, 295–302 (2014).

    CAS  PubMed  Article  Google Scholar 

  39. Dupin, A. & Simmel, F. C. Signalling and differentiation in emulsion-based multi-compartmentalized in vitro gene circuits. Nat. Chem. 11, 32–39 (2019).

    CAS  PubMed  Article  Google Scholar 

  40. Padirac, A., Fujii, T. & Rondelez, Y. Bottom-up construction of in vitro switchable memories. Proc. Natl Acad. Sci. USA 109, E3212–E3220 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Montagne, K., Plasson, R., Sakai, Y., Fujii, T. & Rondelez, Y. Programming an in vitro DNA oscillator using a molecular networking strategy. Mol. Syst. Biol. 7, 466 (2011).

    PubMed  PubMed Central  Article  Google Scholar 

  42. Fujii, T. & Rondelez, Y. Predator–prey molecular ecosystems. ACS Nano 7, 27–34 (2013).

    CAS  PubMed  Article  Google Scholar 

  43. Lotka, A. Undamped oscillations derived from the law of mass action. J. Am. Chem. Soc. 42, 1595–1599 (1920).

    CAS  Article  Google Scholar 

  44. Volterra, V. Fluctuations in the abundance of a species considered mathematically. Nature 118, 558–560 (1926).

    Article  Google Scholar 

  45. Zadorin, A. S. et al. Synthesis and materialization of a reaction-diffusion French flag pattern. Nat. Chem. 9, 990–996 (2017).

    CAS  PubMed  Article  Google Scholar 

  46. Gines, G. et al. Microscopic agents programmed by DNA circuits. Nat. Nanotechnol. 12, 351–359 (2017).

    CAS  PubMed  Article  Google Scholar 

  47. Der Hofstadt, M. V., Galas, J. –C. & Estevez-Torres, A. Spatiotemporal patterning of living cells with extracellular DNA programs. ACS Nano 15, 1741–1752 (2021).

    Article  CAS  Google Scholar 

  48. Deng, J. & Walther, A. Fuel-driven transient DNA strand displacement circuitry with self-resetting function. J. Am. Chem. Soc. 142, 21102–21109 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Wang, S., Yue, L., Wulf, V., Lilienthal, S. & Willner, I. Dissipative constitutional dynamic networks for tunable transient responses and catalytic functions. J. Am. Chem. Soc. 142, 17480–17488 (2020).

    CAS  PubMed  Article  Google Scholar 

  50. Zhou, Z., Ouyang, Y., Wang, J. & Willner, I. Dissipative gated and cascaded DNA networks. J. Am. Chem. Soc. 143, 5071–5079 (2021).

    CAS  PubMed  Article  Google Scholar 

  51. Srinivas, N., Parkin, J., Seelig, G., Winfree, E. & Soloveichik, D. Enzyme-free nucleic acid dynamical systems. Science 358, eaal2052 (2017).

    PubMed  Article  CAS  Google Scholar 

  52. Hirokawa, N. & Noda, Y. Intracellular transport and kinesin superfamily proteins, KIFs: structure, function and dynamics. Physiol. Rev. 88, 1089–1118 (2008).

    CAS  PubMed  Article  Google Scholar 

  53. Gennerich, A. & Vale, R. D. Walking the walk: how kinesin and dynein coordinate their steps. Curr. Opin. Cell Biol. 21, 59–67 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  54. Bath, J., Green, S., Allen, K. & Turberfield, A. Mechanism for a directional, processive and reversible DNA motor. Small 5, 1513–1516 (2009).

    CAS  PubMed  Article  Google Scholar 

  55. Sherman, W. B. & Seeman, N. C. A precisely controlled DNA biped walking device. Nano Lett. 4, 1204–1207 (2004).

    Article  CAS  Google Scholar 

  56. Yin, P., Choi, H. M. T., Calvert, C. R. & Pierce, N. A. Programming biomolecular self-assembly pathways. Nature 451, 318–322 (2008).

    CAS  PubMed  Article  Google Scholar 

  57. Omabegho, T., Sha, R. & Seeman, N. C. A bipedal DNA Brownian motor with coordinated legs. Science 324, 67–71 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Muscat, R. A., Bath, J. & Turberfield, A. J. A programmable molecular robot. Nano Lett. 11, 982–987 (2011).

    CAS  PubMed  Article  Google Scholar 

  59. Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    PubMed  Article  CAS  Google Scholar 

  60. Green, S. J., Bath, J. & Turberfield, A. J. Coordinated chemomechanical cycles: a mechanism for autonomous molecular motion. Phys. Rev. Lett. 101, 238101 (2008).

    CAS  PubMed  Article  Google Scholar 

  61. Yin, P., Yan, H., Daniell, X. G., Turberfield, A. J. & Reif, J. H. A unidirectional DNA walker that moves autonomously along a track. Angew. Chem. Int. Ed. 43, 4906–4911 (2004).

    CAS  Article  Google Scholar 

  62. Bath, J., Green, S. J. & Turberfield, A. J. A free-running DNA motor powered by a nicking enzyme. Angew. Chem. Int. Ed. 44, 4358–4361 (2005).

    CAS  Article  Google Scholar 

  63. Lund, K. et al. Molecular robots guided by prescriptive landscapes. Nature 465, 206–210 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Wickham, S. F. J. et al. Direct observation of stepwise movement of a synthetic molecular transporter. Nat. Nanotechnol. 6, 166–169 (2011).

    CAS  PubMed  Article  Google Scholar 

  65. Wickham, S. F. J. et al. A DNA-based molecular motor that can navigate a network of tracks. Nat. Nanotechnol. 7, 169–173 (2012).

    CAS  PubMed  Article  Google Scholar 

  66. Tian, Y., He, Y., Chen, Y., Yin, P. & Mao, C. A DNAzyme that walks processively and autonomously along a one-dimensional track. Angew. Chem. Int. Ed. 44, 4355–4358 (2005).

    CAS  Article  Google Scholar 

  67. Vallée-Bélisle, A., Ricci, F. & Plaxco, K. W. Thermodynamic basis for the optimization of binding-induced biomolecular switches and structure-switching biosensors. Proc. Natl Acad. Sci. USA 106, 13802–13807 (2009).

    PubMed  PubMed Central  Article  Google Scholar 

  68. Chen, Y., Wang, M. & Mao, C. An autonomous DNA nanomotor powered by a DNA enzyme. Angew. Chem. Int. Ed. 43, 3554–3557 (2004).

    CAS  Article  Google Scholar 

  69. Safdar, S., Lammertyn, J. & Spasic, D. RNA-cleaving NAzymes: the next big thing in biosensing? Trends Biotechnol. 38, 1343–1359 (2020).

    CAS  PubMed  Article  Google Scholar 

  70. Bishop, J. D. & Klavins, E. An improved autonomous DNA nanomotor. Nano Lett. 7, 2574–2577 (2007).

    CAS  PubMed  Article  Google Scholar 

  71. Porchetta, A., Idili, A., Vallée-Bélisle, A. & Ricci, F. A general strategy to introduce pH-induced allostery in DNA-based receptors to achieve controlled release of ligands. Nano Lett. 15, 4467–4471 (2015).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Del Grosso, E., Amodio, A., Ragazzon, G., Prins, L. & Ricci, F. Dissipative synthetic DNA-based receptors for the transient load and release of molecular cargo. Angew. Chem. Int. Ed. 57, 10489–10493 (2018).

    Article  CAS  Google Scholar 

  73. Idili, A., Plaxco, K. W., Vallée-Bélisle, A. & Ricci, F. Thermodynamic basis for engineering high-affinity, high-specificity binding-induced DNA clamp nanoswitches. ACS Nano 7, 10863–10869 (2013).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  74. Rangel, A. E., Hariri, A. A., Eisenstein, M. & Soh, H. T. Engineering aptamer switches for multifunctional stimulus-responsive nanosystems. Adv. Mater. 32, e2003704 (2020).

    PubMed  Article  CAS  Google Scholar 

  75. Del Grosso, E., Ragazzon, G., Prins, L. & Ricci, F. Fuel‐responsive allosteric DNA‐based aptamers for the transient release of ATP and cocaine. Angew. Chem. Int. Ed. 58, 5582–5586 (2019).

    Article  CAS  Google Scholar 

  76. Liedl, T. & Simmel, F. C. Switching the conformation of a DNA molecule with a chemical oscillator. Nano Lett. 5, 1894–1898 (2005).

    CAS  PubMed  Article  Google Scholar 

  77. Gehring, K., Leroy, J. L. & Guéron, M. A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature 363, 561–565 (1993).

    CAS  PubMed  Article  Google Scholar 

  78. Liu, D. & Balasubramanian, S. A proton-fuelled DNA nanomachine. Angew. Chem. Int. Ed. 42, 5734–5736 (2003).

    CAS  Article  Google Scholar 

  79. Heinen, L. & Walther, A. Temporal control of i-motif switch lifetimes for autonomous operation of transient DNA nanostructures. Chem. Sci. 8, 4100–4107 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  80. Mariottini, D., Del Giudice, D., Ercolani, G., Di Stefano, S. & Ricci, F. Dissipative operation of pH-responsive DNA-based nanodevices. Chem. Sci. 12, 11735–11739 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. Heinen, L., Heuser, T., Steinschulte, A. & Walther, A. Antagonistic enzymes in a biocatalytic pH feedback system program autonomous DNA hydrogel life cycles. Nano Lett. 17, 4989–4995 (2017).

    CAS  PubMed  Article  Google Scholar 

  82. Del Grosso, E., Ponzo, I., Ragazzon, G., Prins, L. J. & Ricci, F. Disulfide-linked allosteric modulators for multi-cycle kinetic control of DNA-based nanodevices. Angew. Chem. Int. Ed. 59, 21058–21063 (2020).

    Article  CAS  Google Scholar 

  83. Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    CAS  PubMed  Article  Google Scholar 

  84. Douglas, S. M. et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459, 414–418 (2009).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  85. Ijäs, H., Nummelin, S., Shen, B., Kostiainen, M. A. & Linko, V. Dynamic DNA origami devices: from strand-displacement reactions to external-stimuli responsive systems. Int. J. Mol. Sci. 19, 2114 (2018).

    PubMed Central  Article  CAS  Google Scholar 

  86. Turek, V. A. et al. Thermo-responsive actuation of a DNA origami flexor. Adv. Funct. Mater. 28, 1706410 (2018).

    Article  CAS  Google Scholar 

  87. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    CAS  PubMed  Article  Google Scholar 

  88. Rothemund, P. W. K. et al. Design and characterization of programmable DNA nanotubes. J. Am. Chem. Soc. 126, 16344–16352 (2004).

    CAS  PubMed  Article  Google Scholar 

  89. Agarwal, S. & Franco, E. Enzyme-driven assembly and disassembly of hybrid DNA-RNA nanotubes. J. Am. Chem. Soc. 141, 7831–7841 (2019).

    CAS  PubMed  Article  Google Scholar 

  90. Green, L. N. et al. Autonomous dynamic control of DNA nanostructure self-assembly. Nat. Chem. 11, 510–520 (2019).

    CAS  PubMed  Article  Google Scholar 

  91. Gentile, S. et al. Spontaneous reorganization of DNA-based polymers in higher ordered structures fueled by RNA. J. Am. Chem. Soc. 143, 20296–20301 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  92. Del Grosso, E., Prins, L. J. & Ricci, F. Transient DNA-based nanostructures controlled by redox inputs. Angew. Chem. Int. Ed. 59, 13238–13245 (2020).

    Article  CAS  Google Scholar 

  93. Deng, J. & Walther, A. Pathway complexity in fuel-driven DNA nanostructures with autonomous reconfiguration of multiple dynamic steady states. J. Am. Chem. Soc. 142, 685–689 (2020).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  94. Deng, J. & Walther, A. ATP-responsive and ATP-fueled self-assembling systems and materials. Adv. Mater. 32, e2002629 (2020).

    PubMed  Article  CAS  Google Scholar 

  95. Heinen, L. & Walther, A. Programmable dynamic steady states in ATP-driven nonequilibrium DNA systems. Sci. Adv. 5, eaaw0590 (2019).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. Deng, J., Bezold, D., Jessen, H. J. & Walther, A. Multiple light control mechanisms in ATP-fueled non-equilibrium DNA systems. Angew. Chem. Int. Ed. 59, 12084–12092 (2020).

    CAS  Article  Google Scholar 

  97. Deng, J. & Walther, A. Programmable ATP-fueled DNA coacervates by transient liquid-liquid phase separation. Chem 6, 3329–3343 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  98. Deng, J., Liu, W., Sun, M. & Walther, A. Dissipative organization of DNA oligomers for transient catalytic function. Angew. Chem. Int. Ed. 61, e202113477 (2022).

    CAS  Google Scholar 

  99. Deng, J. & Walther, A. Autonomous DNA nanostructures instructed by hierarchically concatenated chemical reaction networks. Nat. Commun. 12, 5132 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  100. Deng, J. & Walther, A. ATP-powered molecular recognition to engineer transient multivalency and self-sorting 4D hierarchical systems. Nat. Commun. 11, 3658 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  101. Rizzuto, F. J. et al. A dissipative pathway for the structural evolution of DNA fibres. Nat. Chem. 13, 843–849 (2021).

    CAS  PubMed  Article  Google Scholar 

  102. Li, N. et al. Self-resetting molecular probes for nucleic acids detection enabled by fuel dissipative systems. Nano Today 41, 101308 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  103. Ouyang, Y., Zhang, P., Manis-Levy, H., Paltiel, Y. & Willner, I. Transient dissipative optical properties of aggregated Au nanoparticles, CdSe/ZnS quantum dots, and supramolecular nucleic acid-stabilized Ag nanoclusters. J. Am. Chem. Soc. 143, 17622–17632 (2021).

    CAS  PubMed  Article  Google Scholar 

  104. Hamada, S. et al. Dynamic DNA material with emergent locomotion behavior powered by artificial metabolism. Sci. Robot. 4, eaaw3512 (2019).

    PubMed  Article  Google Scholar 

  105. Della Sala, F., Neri, S., Maiti, S., Chen, J. L. –Y. & Prins, L. J. Transient self-assembly of molecular nanostructures driven by chemical fuels. Curr. Opin. Biotechnol. 46, 27–33 (2017).

    PubMed  Article  CAS  Google Scholar 

  106. Rieß, B., Grötsch, R. K. & Boekhoven, J. The design of dissipative molecular assemblies driven by chemical reaction cycles. Chem. 6, 552–578 (2020).

    Article  CAS  Google Scholar 

  107. Lavickova, B., Laohakunakorn, N. & Maerkl, S. J. A partially self-regenerating synthetic cell. Nat. Commun. 11, 6340 (2020).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Zhang, Y., Chan, P. P. Y. & Herr, A. E. Rapid capture and release of nucleic acids through a reversible photo-cycloaddition reaction in a psoralen-functionalized hydrogel. Angew. Chem. Int. Ed. 57, 2357–2361 (2018).

    CAS  Article  Google Scholar 

  109. Dorsey, P. J., Rubanov, M., Wang, W. & Schulman, R. Digital maskless photolithographic patterning of DNA-functionalized pfoly(ethylene glycol) diacrylate hydrogels with visible light enabling photodirected release of oligonucleotides. ACS Macro Lett. 8, 1133–1140 (2019).

    CAS  PubMed  Article  Google Scholar 

  110. Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS  Article  Google Scholar 

  111. Astumian, R. D. Microscopic reversibility as the organizing principle of molecular machines. Nat. Nanotechnol. 7, 684–688 (2012).

    CAS  PubMed  Article  Google Scholar 

  112. Amano, S., Borsley, S., Leigh, D. A. & Sun, Z. Chemical engines: driving systems away from equilibrium through catalyst reaction cycles. Nat. Nanotechnol. 16, 1057–1067 (2021).

    CAS  PubMed  Article  Google Scholar 

  113. Desai, A. & Mitchison, T. J. Microtubule polymerization dynamics. Annu. Rev. Cell Dev. Biol. 13, 83–117 (1997).

    CAS  PubMed  Article  Google Scholar 

  114. Wang, C. et al. Gated dissipative dynamic artificial photosynthetic model systems. J. Am. Chem. Soc. 143, 12120–12218 (2021).

    CAS  PubMed  Article  Google Scholar 

  115. Wang, J. et al. DNAzyme- and light-induced dissipative and gated DNA networks. Chem. Sci. 12, 11204–11212 (2021).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  116. Del Grosso, E. et al. Dissipative control over the toehold-mediated DNA strand displacement reaction. Angew. Chem. Int. Ed. 61, e202201929 (2022).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

F.R. is thankful for support from the European Research Council (ERC Consolidator Grant project no. 819160) and Associazione Italiana per la Ricerca sul Cancro, AIRC (project no. 21965). L.J.P. acknowledges the Italian Ministry of Education and Research (grant no. 2017E44A9P). E.F. acknowledges financial support by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, under award no. DE-SC-0010595.

Author information

Authors and Affiliations

Authors

Contributions

E.D.G., E.F., L.J.P. and F.R. contributed to discussions and wrote the manuscript.

Corresponding authors

Correspondence to Elisa Franco, Leonard J. Prins or Francesco Ricci.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Chunhai Fan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Del Grosso, E., Franco, E., Prins, L.J. et al. Dissipative DNA nanotechnology. Nat. Chem. 14, 600–613 (2022). https://doi.org/10.1038/s41557-022-00957-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-022-00957-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing