Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Concepts and status of Chinese space gravitational wave detection projects

Abstract

Gravitational wave (GW) detection in space probes the GW spectrum that is inaccessible from the Earth. In addition to the LISA project led by the European Space Agency, and the DECIGO detector proposed by the Japan Aerospace Exploration Agency, two Chinese space-based GW observatories—TianQin and Taiji—are planned to be launched in the 2030s. TianQin has a unique concept in its design with a geocentric orbit. Taiji’s design is similar to LISA, but is more ambitious with a longer arm distance. Both facilities are complementary to LISA, considering that TianQin is sensitive to higher frequencies and Taiji probes similar frequencies but with a higher sensitivity. In this Perspective we explain the concepts of both facilities and introduce the development milestones of the TianQin and Taiji projects in testing key technologies to pave the way for future space-based GW detections. Considering that LISA, TianQin and Taiji have similar scientific goals, are all scheduled to be launched around the 2030s and will operate concurrently, we discuss possible collaborations among them to improve GW source localization and characterization.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Schematic of space-based GW detector constellations.
Fig. 2: Noise curves along with various sources.
Fig. 3: Sky maps for monochromatic sources.
Fig. 4: Sky maps for coalescence sources.

Data availability

The data that support the findings of this study are available from Y.G. upon reasonable request. The data for Fig. 2 can be generated from the code deposited in https://github.com/yggong/transfer_function.

Code availability

The Python code can be obtained at https://github.com/yggong/transfer_function.

References

  1. 1.

    Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  2. 2.

    Abbott, B. P. et al. GW150914: the advanced LIGO detectors in the era of first discoveries. Phys. Rev. Lett. 116, 131103 (2016).

    ADS  MathSciNet  Article  Google Scholar 

  3. 3.

    Abbott, B. P. et al. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Phys. Rev. X 9, 031040 (2019).

    Google Scholar 

  4. 4.

    Abbott, R. et al. GWTC-2: compact binary coalescences observed by LIGO and Virgo during the first half of the third observing run. Phys. Rev. X 11, 021053 (2021).

    Google Scholar 

  5. 5.

    Abbott, B. P. et al. GW151226: observation of gravitational waves from a 22-solar-mass binary black hole coalescence. Phys. Rev. Lett. 116, 241103 (2016).

    ADS  Article  Google Scholar 

  6. 6.

    Abbott, B. P. et al. GW170104: observation of a 50-solar-mass binary black hole coalescence at redshift 0.2. Phys. Rev. Lett. 118, 221101 (2017); erratum 121, 129901 (2018).

  7. 7.

    Abbott, B. P. et al. GW170814: a three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 119, 141101 (2017).

    ADS  Article  Google Scholar 

  8. 8.

    Abbott, B. P. et al. GW170608: observation of a 19-solar-mass binary black hole coalescence. Astrophys. J. Lett. 851, L35 (2017).

    ADS  Article  Google Scholar 

  9. 9.

    Abbott, R. et al. GW190412: observation of a binary-black-hole coalescence with asymmetric masses. Phys. Rev. D 102, 043015 (2020).

    ADS  Article  Google Scholar 

  10. 10.

    Abbott, R. et al. GW190521: a binary black hole merger with a total mass of 150M. Phys. Rev. Lett. 125, 101102 (2020).

    ADS  Article  Google Scholar 

  11. 11.

    Abbott, B. P. et al. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017).

    ADS  Article  Google Scholar 

  12. 12.

    Abbott, B. P. et al. GW190425: observation of a compact binary coalescence with total mass ~ 3.4M. Astrophys. J. Lett. 892, L3 (2020).

    ADS  Article  Google Scholar 

  13. 13.

    Abbott, R. et al. GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object. Astrophys. J. Lett. 896, L44 (2020).

    ADS  Article  Google Scholar 

  14. 14.

    Harry, G. M. Advanced LIGO: the next generation of gravitational wave detectors. Class. Quantum Grav. 27, 084006 (2010).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    Aasi, J. et al. Advanced LIGO. Class. Quantum Grav. 32, 074001 (2015).

    ADS  Article  Google Scholar 

  16. 16.

    Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Grav. 32, 024001 (2015).

    ADS  Article  Google Scholar 

  17. 17.

    Somiya, K. Detector configuration of KAGRA: the Japanese cryogenic gravitational-wave detector. Class. Quantum Grav. 29, 124007 (2012).

    ADS  Article  Google Scholar 

  18. 18.

    Aso, Y. et al. Interferometer design of the KAGRA gravitational wave detector. Phys. Rev. D 88, 043007 (2013).

    ADS  Article  Google Scholar 

  19. 19.

    Danzmann, K. LISA: an ESA cornerstone mission for a gravitational wave observatory. Class. Quantum Grav. 14, 1399 (1997).

    ADS  Article  Google Scholar 

  20. 20.

    Amaro-Seoane, P. et al. Laser Interferometer Space Antenna. Preprint at http://arxiv.org/abs/1702.00786 (2017).

  21. 21.

    Seto, N., Kawamura, S. & Nakamura, T. Possibility of direct measurement of the acceleration of the universe using 0.1-Hz band laser interferometer gravitational wave antenna in space. Phys. Rev. Lett. 87, 221103 (2001).

    ADS  Article  Google Scholar 

  22. 22.

    Kawamura, S. et al. The Japanese space gravitational wave antenna DECIGO. Class. Quantum Grav. 23, S125 (2006).

    Article  Google Scholar 

  23. 23.

    Kawamura, S. et al. The Japanese space gravitational wave antenna: DECIGO. Class. Quantum Grav. 28, 094011 (2011).

    ADS  Article  Google Scholar 

  24. 24.

    Luo, J. et al. TianQin: a space-borne gravitational wave detector. Class. Quantum Grav. 33, 035010 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    Hu, W.-R. & Wu, Y.-L. The Taiji program in space for gravitational wave physics and the nature of gravity. Natl Sci. Rev. 4, 685–686 (2017).

    Article  Google Scholar 

  26. 26.

    Armano, M. et al. Sub-Femto-g free fall for space-based gravitational wave observatories: LISA pathfinder results. Phys. Rev. Lett. 116, 231101 (2016).

    ADS  Article  Google Scholar 

  27. 27.

    Armano, M. et al. Charge-induced force-noise on free-falling test masses: results from LISA Pathfinder. Phys. Rev. Lett. 118, 171101 (2017).

    ADS  Article  Google Scholar 

  28. 28.

    Armano, M. et al. Beyond the required LISA free-fall performance: new LISA Pathfinder results down to 20μHz. Phys. Rev. Lett. 120, 061101 (2018).

    ADS  Article  Google Scholar 

  29. 29.

    Armano, M. et al. LISA Pathfinder performance confirmed in an open-loop configuration: results from the free-fall actuation mode. Phys. Rev. Lett. 123, 111101 (2019).

    ADS  Article  Google Scholar 

  30. 30.

    Armano, M. et al. Temperature stability in the sub-milliHertz band with LISA Pathfinder. Mon. Not. R. Astron. Soc. 486, 3368 (2019).

    ADS  Article  Google Scholar 

  31. 31.

    Armano, M. et al. Sensor noise in LISA Pathfinder: in-flight performance of the optical test mass readout. Phys. Rev. Lett. 126, 131103 (2021).

    ADS  Article  Google Scholar 

  32. 32.

    Kawamura, S. et al. Current status of space gravitational wave antenna DECIGO and B-DECIGO. Preprint at http://arxiv.org/abs/2006.13545 (2020).

  33. 33.

    Hellings, R. et al. A Low-Cost High-Performance Space Gravitational Astronomy Mission (PCOS, NASA, 2012); https://pcos.gsfc.nasa.gov/studies/rfi/GWRFI-0007-Hellings.pdf

  34. 34.

    McWilliams, S. T. Geostationary Antenna for Disturbance-Free Laser Interferometry (GADFLI). Preprint at http://arxiv.org/abs/1111.3708 (2011).

  35. 35.

    Tinto, M., DeBra, D., Buchman, S. & Tilley, S. gLISA: geosynchronous laser interferometer space antenna concepts with off the-shelf satellites. Rev. Sci. Instrum. 86, 014501 (2015).

    ADS  Article  Google Scholar 

  36. 36.

    Zhang, C., Gong, Y., Liu, H., Wang, B. & Zhang, C. Sky localization of space-based gravitational wave detectors. Phys. Rev. D 103, 103013 (2021).

    ADS  Article  Google Scholar 

  37. 37.

    Zhang, C., Gong, Y., Wang, B. & Zhang, C. Accuracy of parameter estimations with a spaceborne gravitational wave observatory. Phys. Rev. D 103, 104066 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  38. 38.

    Amaro-Seoane, P. & Santamaria, L. Detection of IMBHs with ground-based gravitational wave observatories: a biography of a binary of black holes, from birth to death. Astrophys. J. 722, 1197 (2010).

    ADS  Article  Google Scholar 

  39. 39.

    Key, J. S. & Cornish, N. J. Characterizing the gravitational wave signature from cosmic string cusps. Phys. Rev. D 79, 043014 (2009).

    ADS  Article  Google Scholar 

  40. 40.

    Sesana, A. Prospects for multiband gravitational-wave astronomy after GW150914. Phys. Rev. Lett. 116, 231102 (2016).

    ADS  Article  Google Scholar 

  41. 41.

    Nandra, K. et al. The hot and energetic Universe: a white paper presenting the science theme motivating the Athena+ mission. Preprint at http://arxiv.org/abs/1306.2307 (2013).

  42. 42.

    McGee, S., Sesana, A. & Vecchio, A. Linking gravitational waves and X-ray phenomena with joint LISA and Athena observations. Nat. Astron. 4, 26–31 (2020).

    ADS  Article  Google Scholar 

  43. 43.

    Lindegren, L. & Perryman, M. A. C. GAIA: global astrometric interferometer for astrophysics. Astron. Astrophys. Suppl. Ser. 116, 579–595 (1996).

    ADS  Article  Google Scholar 

  44. 44.

    Abell, P. A. et al. LSST Science Book, Version 2.0. Preprint at http://arxiv.org/abs/0912.0201 (2009).

  45. 45.

    Smits, R. et al. Pulsar searches and timing with the square kilometre array. Astron. Astrophys. 493, 1161 (2009).

    ADS  Article  Google Scholar 

  46. 46.

    Evans, C. et al. ELT-MOS white paper: science overview and requirements. Preprint at http://arxiv.org/abs/1303.0029 (2013).

  47. 47.

    Ruan, W.-H., Liu, C., Guo, Z.-K., Wu, Y.-L. & Cai, R.-G. The LISA–Taiji network. Nat. Astron. 4, 108–109 (2020).

    ADS  Article  Google Scholar 

  48. 48.

    Wang, G., Ni, W.-T. & Han, W.-B. Revisiting time delay interferometry for unequal-arm LISA and TAIJI. Preprint at http://arxiv.org/abs/2008.05812 (2020).

  49. 49.

    Wang, R. et al. Hubble parameter estimation via dark sirens with the LISA-Taiji network. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwab0542 (2021).

  50. 50.

    Kramer, M. & Champion, D. J. The European pulsar timing array and the large European array for pulsars. Class. Quantum Grav. 30, 224009 (2013).

    ADS  Article  Google Scholar 

  51. 51.

    Jenet, F. et al. The North American Nanohertz Observatory for Gravitational Waves. Preprint at http://arxiv.org/abs/0909.1058 (2009).

  52. 52.

    Hobbs, G. B. et al. Gravitational wave detection using pulsars: status of the Parkes Pulsar Timing Array project. Publ. Astron. Soc. Austr. 26, 103–109 (2009).

    ADS  Article  Google Scholar 

  53. 53.

    Hobbs, G. et al. The role of FAST in pulsar timing arrays. Res. Astron. Astrophys. 19, 020 (2019).

    ADS  Article  Google Scholar 

  54. 54.

    Hobbs, G. et al. The international pulsar timing array project: using pulsars as a gravitational wave detector. Class. Quantum Grav. 27, 084013 (2010).

    ADS  Article  Google Scholar 

  55. 55.

    Guth, A. H. The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981).

    ADS  MATH  Article  Google Scholar 

  56. 56.

    Starobinsky, A. A. A new type of isotropic cosmological models without singularity. Phys. Lett. B 91, 99–102 (1980).

    ADS  MATH  Article  Google Scholar 

  57. 57.

    Albrecht, A. & Steinhardt, P. J. Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220 (1982).

    ADS  Article  Google Scholar 

  58. 58.

    Linde, A. D. Chaotic inflation. Phys. Lett. B 129, 177–181 (1983).

    ADS  Article  Google Scholar 

  59. 59.

    Sato, K. First order phase transition of a vacuum and expansion of the universe. Mon. Not. R. Astron. Soc. 195, 467–479 (1981).

    ADS  Article  Google Scholar 

  60. 60.

    Aghanim, N. et al. Planck 2018 results. I. Overview and the cosmological legacy of planck. Astron. Astrophys. 641, A1 (2020).

    Article  Google Scholar 

  61. 61.

    Ade, P. A. R. et al. BICEP2/Keck array x: constraints on primordial gravitational waves using Planck, WMAP, and new BICEP2/Keck observations through the 2015 season. Phys. Rev. Lett. 121, 221301 (2018).

    ADS  Article  Google Scholar 

  62. 62.

    Ahmed, Z. et al. BICEP3: a 95GHz refracting telescope for degree-scale CMB polarization. Proc. SPIE Int. Soc. Opt. Eng. 9153, 91531N (2014).

    Google Scholar 

  63. 63.

    Bleem, L. et al. An overview of the SPTpol experiment. J. Low Temp. Phys. 167, 859 (2012).

    ADS  Article  Google Scholar 

  64. 64.

    Suzuki, A. et al. The POLARBEAR-2 and the simons array experiment. J. Low Temp. Phys. 184, 805 (2016).

    ADS  Article  Google Scholar 

  65. 65.

    Cai, Y.-F. & Zhang, X. Probing the origin of our universe through primordial gravitational waves by Ali CMB project. Sci. China Phys. Mech. Astron. 59, 670431 (2016).

    Article  Google Scholar 

  66. 66.

    Sutin, B. M. et al. PICO - the probe of inflation and cosmic origins. Proc. SPIE 10698, 106984F (2018).

    Google Scholar 

  67. 67.

    Matsumura, T. et al. Mission design of LiteBIRD. J. Low Temp. Phys. 176, 733–740 (2014).

    ADS  Article  Google Scholar 

  68. 68.

    Abazajian, K. et al. CMB-S4: forecasting constraints on primordial gravitational waves. Preprint at http://arxiv.org/abs/2008.12619 (2020).

  69. 69.

    Israel, G. L. et al. RX J0806.3+1527: a double degenerate binary with the shortest known orbital period (321s). Astron. Astrophys. 386, L13 (2002).

    ADS  Article  Google Scholar 

  70. 70.

    Barros, S. C. C. et al. Geometrical constraints upon the unipolar model of V407 Vul and RX J0806.3+1527. Mon. Not. R. Astron. Soc. 357, 1306–1312 (2005).

    ADS  Article  Google Scholar 

  71. 71.

    Roelofs, G. H. A. et al. Spectroscopic evidence for a 5.4-minute orbital period in HM Cancri. Astrophys. J. Lett. 711, L138 (2010).

    ADS  Article  Google Scholar 

  72. 72.

    Esposito, P., Israel, G. L., Dall’Osso, S. & Covino, S. Swift X-ray and ultraviolet observations of the shortest orbital period double-degenerate system RX J0806.3+1527 (HM Cnc). Astron. Astrophys. 561, A117 (2014).

    ADS  Article  Google Scholar 

  73. 73.

    Kupfer, T. et al. LISA verification binaries with updated distances from Gaia Data Release 2. Mon. Not. R. Astron. Soc. 480, 302–309 (2018).

    ADS  Article  Google Scholar 

  74. 74.

    Ye, B. et al. Optimizing orbits for TianQin. Int. J. Mod. Phys. D 28, 1950121 (2019).

    ADS  Article  Google Scholar 

  75. 75.

    Tan, Z. T., Ye, B. & Zhang, X. Impact of orbital orientations and radii on TianQin constellation stability. Int. J. Mod. Phys. D 29, 2050056 (2020).

    ADS  Article  Google Scholar 

  76. 76.

    Zhang, X. et al. Effect of Earth-Moon’s gravity on TianQin’s range acceleration noise. Phys. Rev. D 103, 062001 (2021).

    ADS  Article  Google Scholar 

  77. 77.

    Ye, B., Zhang, X., Ding, Y. & Meng, Y. Eclipse avoidance in TianQin orbit selection. Phys. Rev. D 103, 042007 (2021).

    ADS  Article  Google Scholar 

  78. 78.

    Huang, S.-J. et al. Science with the TianQin observatory: preliminary results on galactic double white dwarf binaries. Phys. Rev. D 102, 063021 (2020).

    ADS  Article  Google Scholar 

  79. 79.

    Liu, S., Hu, Y.-M., Zhang, J.-D. & Mei, J. Science with the TianQin observatory: preliminary results on stellar-mass binary black holes. Phys. Rev. D 101, 103027 (2020).

    ADS  Article  Google Scholar 

  80. 80.

    Wang, H.-T. et al. Science with the TianQin observatory: preliminary results on massive black hole binaries. Phys. Rev. D 100, 043003 (2019).

    ADS  Article  Google Scholar 

  81. 81.

    Shi, C. et al. Science with the TianQin observatory: preliminary results on testing the no-hair theorem with ringdown signals. Phys. Rev. D 100, 044036 (2019).

    ADS  Article  Google Scholar 

  82. 82.

    Bao, J. et al. Constraining modified gravity with ringdown signals: an explicit example. Phys. Rev. D 100, 084024 (2019).

    ADS  MathSciNet  Article  Google Scholar 

  83. 83.

    Feng, W.-F., Wang, H.-T., Hu, X.-C., Hu, Y.-M. & Wang, Y. Preliminary study on parameter estimation accuracy of supermassive black hole binary inspirals for TianQin. Phys. Rev. D 99, 123002 (2019).

    ADS  Article  Google Scholar 

  84. 84.

    Fan, H.-M., Hu, Y.-M. & Barausse, E. et al. Science with the TianQin observatory: preliminary result on extreme-mass-ratio inspirals. Phys. Rev. D 102, 063016 (2020).

    ADS  Article  Google Scholar 

  85. 85.

    Di, H. & Gong, Y. Primordial black holes and second order gravitational waves from ultra-slow-roll inflation. J. Cosmol. Astropart. Phys. 2018, 007 (2018).

    MathSciNet  Article  Google Scholar 

  86. 86.

    Lin, J. et al. Primordial black holes and secondary gravitational waves from k and G inflation. Phys. Rev. D 101, 103515 (2020).

    ADS  MathSciNet  Article  Google Scholar 

  87. 87.

    Hu, Y.-M., Mei, J. & Luo, J. Science prospects for space-borne gravitational-wave missions. Natl Sci. Rev. 4, 683–684 (2017).

    Article  Google Scholar 

  88. 88.

    Ellis, J. & Lewicki, M. Cosmic string interpretation of NANOGrav pulsar timing data. Phys. Rev. Lett. 126, 041304 (2021).

    ADS  MathSciNet  Article  Google Scholar 

  89. 89.

    Mei, J. et al. The TianQin project: current progress on science and technology. Prog. Theor. Exp. Phys. 2021, 05A107 (2021).

    Article  Google Scholar 

  90. 90.

    Luo, J. et al. The first round result from the TianQin-1 satellite. Class. Quantum Grav. 37, 185013 (2020).

    ADS  Article  Google Scholar 

  91. 91.

    Ruan, W.-H., Guo, Z.-K., Cai, R.-G. & Zhang, Y.-Z. Taiji program: gravitational-wave sources. Int. J. Mod. Phys. A 35, 2050075 (2020).

    ADS  Article  Google Scholar 

  92. 92.

    Luo, Z., Guo, Z., Jin, G., Wu, Y. & Hu, W. A brief analysis to Taiji: science and technology. Results Phys. 16, 102918 (2020).

    Article  Google Scholar 

  93. 93.

    Luo, Z., Wang, Y., Wu, Y., Hu, W. & Jin, G. The Taiji program: a concise overview. Prog. Theor. Exp. Phys. 2021, 05A108 (2021).

    Article  Google Scholar 

  94. 94.

    Crowder, J. & Cornish, N. J. Beyond LISA: exploring future gravitational wave missions. Phys. Rev. D 72, 083005 (2005).

    ADS  Article  Google Scholar 

  95. 95.

    Ruan, W.-H., Liu, C., Guo, Z.-K., Wu, Y.-L. & Cai, R.-G. The LISA-Taiji network: precision localization of massive black hole binaries. Research 2021, 6014164 (2021).

    Google Scholar 

  96. 96.

    Wang, G., Ni, W.-T., Han, W.-B., Yang, S.-C. & Zhong, X.-Y. Numerical simulation of sky localization for LISA-TAIJI joint observation. Phys. Rev. D 102, 024089 (2020).

    ADS  Article  Google Scholar 

  97. 97.

    Omiya, H. & Seto, N. Searching for anomalous polarization modes of the stochastic gravitational wave background with LISA and Taiji. Phys. Rev. D 102, 084053 (2020).

    ADS  Article  Google Scholar 

  98. 98.

    Orlando, G., Pieroni, M. & Ricciardone, A. Measuring parity violation in the stochastic gravitational wave background with the LISA-Taiji network. J. Cosmol. Astropart. Phys. 2021, 069 (2021).

    MathSciNet  Article  Google Scholar 

  99. 99.

    Wang, G. & Han, W.-B. Observing gravitational wave polarizations with the LISA-TAIJI network. Phys. Rev. D 103, 064021 (2021).

    ADS  Article  Google Scholar 

  100. 100.

    Yunes, N. & Pretorius, F. Fundamental theoretical bias in gravitational wave astrophysics and the parameterized post-einsteinian framework. Phys. Rev. D 80, 122003 (2009).

    ADS  Article  Google Scholar 

  101. 101.

    Shuman, K. J. & Cornish, N. J. Massive black hole binaries and where to find them with dual detector networks. Preprint at http://arxiv.org/abs/2105.02943 (2021).

  102. 102.

    Yagi, K. & Seto, N. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys. Rev. D 83, 044011 (2011); erratum 95, 109901 (2017).

  103. 103.

    Moore, C. J., Taylor, S. R. & Gair, J. R. Estimating the sensitivity of pulsar timing arrays. Class. Quantum Grav. 32, 055004 (2015).

    ADS  MATH  Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key Research and Development Program of China under grant numbers 2020YFC2201504 and 2020YFC2201400, the National Natural Science Foundation of China under grant numbers 11875136 and 12075202 and the Major Program of the National Natural Science Foundation of China under grant number 11690021. B.W. acknowledges the support from Shanghai Education Commission. J.L. acknowledges support from the Guangdong Major Project of Basic and Applied Basic Research under grant number 2019B030302001.

Author information

Affiliations

Authors

Contributions

All authors contributed to the work presented in this paper. Y.G. analysed the data, contributed analysis tools and wrote the paper. J.L. conceived TianQin and reviewed the paper. B.W. contributed materials and wrote the paper.

Corresponding authors

Correspondence to Yungui Gong or Bin Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Astronomy thanks Neil Cornish and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gong, Y., Luo, J. & Wang, B. Concepts and status of Chinese space gravitational wave detection projects. Nat Astron 5, 881–889 (2021). https://doi.org/10.1038/s41550-021-01480-3

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing