Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The Sun’s dynamic extended corona observed in extreme ultraviolet


The ‘middle corona’ is a critical transition between the highly disparate physical regimes of the lower and outer solar coronae. Nonetheless, it remains poorly understood due to the difficulty of observing this faint region (1.5–3 R). New observations from the Solar Ultraviolet Imager of a Geostationary Operational Environmental Satellite in August and September 2018 provide the first comprehensive look at this region’s characteristics and long-term evolution in extreme ultraviolet. Our analysis shows that the dominant emission mechanism here is resonant scattering rather than collisional excitation, consistent with recent model predictions. Our observations highlight that solar wind structures in the heliosphere originate from complex dynamics manifesting in the middle corona that do not occur at lower heights. These data emphasize that low-coronal phenomena can be strongly influenced by inflows from above, not only by photospheric motion, a factor largely overlooked in current models of coronal evolution. This study reveals the full kinematic profile of the initiation of several coronal mass ejections, filling a crucial observational gap that has hindered understanding of the origins of solar eruptions. These new data uniquely demonstrate how extreme ultraviolet observations of the middle corona provide strong new constraints on models seeking to unify the corona and heliosphere.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Normalized brightness fall-off as a function of height along a radial cut of ~6° through a streamer.
Fig. 2: Selected composite SUVI images at 171 Å (gold) and 195 Å (blue).
Fig. 3: Selected SUVI 195 Å and white-light LASCO C2 coronagraph composite images.
Fig. 4: Height–time diagrams showing radial evolution of features as a function of time at selected positions, wavelengths and time ranges.

Data availability

Standard SUVI observations are available for download via the NOAA National Centers for Environmental Information (NCEI) GOES-R archive67. Preliminary data products from this campaign, as used in this paper, as well as additional documentation and observations from subsequent campaigns, are available at the same website. Fully processed SUVI observations will be made public as they become available.

Code availability

The data processing and analysis discussed in this paper leveraged publicly available software packages in Python and SolarSoft IDL. The specific processing steps that generated figures and videos presented in this paper used an iterative process that spanned several platforms and multiple languages, and therefore publication of the code in a single, self-contained processing package is not straightforward. However, all processing codes will be provided on request.


  1. 1.

    Schwenn, R. Space weather: the solar perspective. Living Rev. Sol. Phys. 3, 2 (2006).

    ADS  Google Scholar 

  2. 2.

    Cranmer, S. R. & Winebarger, A. R. The properties of the solar corona and its connection to the solar wind. Ann. Rev. Astron. Astrophys. 57, 157–187 (2019).

    ADS  Google Scholar 

  3. 3.

    Howard, R. A. et al. Near-Sun observations of an F-corona decrease and K-corona fine structure. Nature 576, 232–236 (2019).

    ADS  Google Scholar 

  4. 4.

    Kasper, J. C. et al. Alfvénic velocity spikes and rotational flows in the near-Sun solar wind. Nature 576, 228–231 (2019).

    ADS  Google Scholar 

  5. 5.

    McComas, D. J. et al. Probing the energetic particle environment near the Sun. Nature 576, 223–227 (2019).

    ADS  Google Scholar 

  6. 6.

    Bale, S. D. et al. Highly structured slow solar wind emerging from an equatorial coronal hole. Nature 576, 237–242 (2019).

    ADS  Google Scholar 

  7. 7.

    DeForest, C. E., Howard, R. A., Velli, M., Viall, N. & Vourlidas, A. The highly structured outer solar corona. Astrophys. J. 862, 18 (2018).

    ADS  Google Scholar 

  8. 8.

    Chhiber, R., Usmanov, A. V., Matthaeus, W. H. & Goldstein, M. L. Contextual predictions for the Parker Solar Probe. I. Critical surfaces and regions. Astrophys. J. Suppl. Ser. 241, 11 (2019).

    ADS  Google Scholar 

  9. 9.

    Del Zanna, G., Raymond, J., Andretta, V., Telloni, D. & Golub, L. Predicting the COSIE-C signal from the outer corona up to 3 solar radii. Astrophys. J. 865, 132 (2018).

    ADS  Google Scholar 

  10. 10.

    Vásquez, A. M., van Ballegooijen, A. A. & Raymond, J. C. The effect of proton temperature anisotropy on the solar minimum corona and wind. Astrophys. J. 598, 1361–1374 (2003).

    ADS  Google Scholar 

  11. 11.

    Masson, S., McCauley, P., Golub, L., Reeves, K. K. & DeLuca, E. E. Dynamics of the transition corona. Astrophys. J. 787, 145 (2014).

    ADS  Google Scholar 

  12. 12.

    DeForest, C. E., Hassler, D. M. & Schwadron, N. A. On the magnetic correspondence between the photosphere and the heliosphere. Sol. Phys. 229, 161–174 (2005).

    ADS  Google Scholar 

  13. 13.

    Gilly, C. R. & Cranmer, S. R. The effect of solar wind expansion and nonequilibrium ionization on the broadening of coronal emission lines. Astrophys. J. 901, 150 (2020).

    ADS  Google Scholar 

  14. 14.

    Linker, J. A. et al. The open flux problem. Astrophys. J. 848, 70 (2017).

    ADS  Google Scholar 

  15. 15.

    Riley, P. et al. Can an unobserved concentration of magnetic flux above the poles of the Sun resolve the open flux problem?. Astrophys. J. 884, 18 (2020).

    ADS  Google Scholar 

  16. 16.

    Schrijver, C. J. & McMullen, R. A. A case for resonant scattering in the quiet solar corona in extreme-ultraviolet lines with high oscillator strengths. Astrophys. J. 531, 1121–1128 (2000).

    ADS  Google Scholar 

  17. 17.

    Winebarger, A. R., Warren, H. P. & Mariska, J. T. Transition Region and Coronal Explorer and Soft X-Ray Telescope active region loop observations: comparisons with static solutions of the hydrodynamic equations. Astrophys. J. 587, 439–449 (2003).

    ADS  Google Scholar 

  18. 18.

    DeForest, C. E., Martens, P. C. H. & Wills-Davey, M. J. Solar coronal structure and stray light in TRACE. Astrophys. J. 690, 1264–1271 (2009).

    ADS  Google Scholar 

  19. 19.

    Seaton, D. B., De Groof, A., Shearer, P., Berghmans, D. & Nicula, B. SWAP observations of the long-term, large-scale evolution of the extreme-ultraviolet solar corona. Astrophys. J. 777, 72 (2013).

    ADS  Google Scholar 

  20. 20.

    Goryaev, F., Slemzin, V., Vainshtein, L. & Williams, D. R. Study of extreme-ultraviolet emission and properties of a coronal streamer from PROBA2/SWAP, Hinode/EIS and Mauna Loa Mk4 observations. Astrophys. J. 781, 100 (2014).

    ADS  Google Scholar 

  21. 21.

    O’Hara, J. P., Mierla, M., Podladchikova, O., D’Huys, E. & West, M. J. Exceptional extended field-of-view observations by PROBA2/SWAP on 2017 April 1 and 3. Astrophys. J. 883, 59 (2019).

    ADS  Google Scholar 

  22. 22.

    Tadikonda, S. K. et al. Coronal imaging with the Solar UltraViolet Imager. Sol. Phys. 294, 28 (2019).

    ADS  Google Scholar 

  23. 23.

    Seaton, D. B. & Darnel, J. M. Observations of an eruptive solar flare in the extended EUV solar corona. Astrophys. J. Lett. 852, L9 (2018).

    ADS  Google Scholar 

  24. 24.

    Vasudevan, G. et al. Design and on-orbit calibration of the solar ultraviolet imager (SUVI) on the GOES-R series weather satellite. Proc. SPIE 11180, 111807P (2019).

    Google Scholar 

  25. 25.

    Brueckner, G. E. et al. The Large Angle Spectroscopic Coronagraph (LASCO). Sol. Phys. 162, 357–402 (1995).

    ADS  Google Scholar 

  26. 26.

    Strachan, L. et al. Latitudinal dependence of outflow velocities from O VI Doppler dimming observations during the Whole Sun Month. J. Geophys. Res. 105, 2345–2356 (2000).

    ADS  Google Scholar 

  27. 27.

    Parker, E. N. Dynamics of the interplanetary gas and magnetic fields. Astrophys. J. 128, 664–676 (1958).

    ADS  Google Scholar 

  28. 28.

    Leighton, R. B., Noyes, R. W. & Simon, G. W. Velocity fields in the solar atmosphere. I. Preliminary report. Astrophys. J. 135, 474–499 (1962).

    ADS  Google Scholar 

  29. 29.

    Hundhausen, A. J. Physics and Chemistry in Space 5: Coronal Expansion and Solar Wind (ed. Roederer, J. G.) (Springer, 1972).

  30. 30.

    Cranmer, S. R. Coronal holes and the high-speed solar wind. Space Sci. Rev. 101, 229–294 (2002).

    ADS  Google Scholar 

  31. 31.

    Golub, L. & Pasachoff, J. M. The Solar Corona 2nd edn (Cambridge Univ. Press, 2010)

  32. 32.

    DeForest, C. E., Howard, T. A. & McComas, D. J. Inbound waves in the solar corona: a direct indicator of Alfvén surface location. Astrophys. J. 787, 124 (2014).

    ADS  Google Scholar 

  33. 33.

    O’Dwyer, B., Del Zanna, G., Mason, H. E., Weber, M. A. & Tripathi, D. SDO/AIA response to coronal hole, quiet Sun, active region, and flare plasma. Astron. Astrophys. 521, A21 (2010).

    Google Scholar 

  34. 34.

    Sheeley, N. R. et al. Measurements of flow speeds in the corona between 2 and 30 R. Astrophys. J. 484, 472–478 (1997).

    ADS  Google Scholar 

  35. 35.

    Viall, N. M., Spence, H. E., Vourlidas, A. & Howard, R. A. Examining periodic solar-wind density structures observed in the SECCHI Heliospheric Imagers. Sol. Phys. 267, 175–202 (2010).

    ADS  Google Scholar 

  36. 36.

    Rouillard, A. P. et al. The solar origin of small interplanetary transients. Astrophys. J. 734, 7 (2011).

    ADS  Google Scholar 

  37. 37.

    DeForest, C. E., Matthaeus, W. H., Viall, N. M. & Cranmer, S. R. Fading coronal structure and the onset of turbulence in the young solar wind. Astrophys. J. 828, 66 (2016).

    ADS  Google Scholar 

  38. 38.

    Pontin, D. I. & Wyper, P. F. The effect of reconnection on the structure of the Sun’s open–closed flux boundary. Astrophys. J. 805, 39 (2015).

    ADS  Google Scholar 

  39. 39.

    Seaton, D. B. & Forbes, T. G. An analytical model for reconnection outflow jets including thermal conduction. Astrophys. J. 701, 348–359 (2009).

    ADS  Google Scholar 

  40. 40.

    Robbrecht, E., Patsourakos, S. & Vourlidas, A. No trace left behind: STEREO observation of a coronal mass ejection without low coronal signatures. Astrophys. J. 701, 283–291 (2009).

    ADS  Google Scholar 

  41. 41.

    Ma, S., Attrill, G. D. R., Golub, L. & Lin, J. Statistical study of coronal mass ejections with and without distinct low coronal signatures. Astrophys. J. 722, 289–301 (2010).

    ADS  Google Scholar 

  42. 42.

    D’Huys, E., Seaton, D. B., Poedts, S. & Berghmans, D. Observational characteristics of coronal mass ejections without low-coronal signatures. Astrophys. J. 795, 49 (2014).

    ADS  Google Scholar 

  43. 43.

    Sheely, N. R. Jr. & Wang, Y.-M. Coronal inflows during the interval 1996-2014. Astrophys. J. 797, 10 (2014).

    ADS  Google Scholar 

  44. 44.

    Sheely, N. R. Jr. & Wang, Y.-M. In/out pairs and the detachment of coronal streamers. Astrophys. J. 655, 1142–1156 (2007).

    ADS  Google Scholar 

  45. 45.

    Dobrzycka, D., Cranmer, S. R., Raymond, J. C., Biesecker, D. A. & Gurman, J. B. Polar coronal jets at solar minimum. Astrophys. J. 565, 621–629 (2002).

    ADS  Google Scholar 

  46. 46.

    Savcheva, A. et al. A study of polar jet parameters based on Hinode XRT observations. Publ. Astron. Soc. Jpn 59, S771–S778 (2007).

    ADS  Google Scholar 

  47. 47.

    Raouafi, N. E. et al. Solar coronal jets: observations, theory, and modeling. Space Sci. Rev. 201, 1–53 (2016).

    ADS  Google Scholar 

  48. 48.

    Wang, Y.-M. & Sheeley, N. R. Jr. Coronal white-light jets near sunspot maximum. Astrophys. J. 575, 542–552 (2002).

    ADS  Google Scholar 

  49. 49.

    Chen, P. F. Coronal mass ejections: models and their observational basis. Living Rev. Sol. Phys. 8, 1 (2011).

    ADS  Google Scholar 

  50. 50.

    Lin, J. et al. Review on current sheets in CME development: theories and observations. Space Sci. Rev. 194, 237–302 (2015).

    ADS  Google Scholar 

  51. 51.

    Chen, J. & Krall, J. Acceleration of coronal mass ejections. J. Geophys. Res. Space Phys. 108, 1410 (2003).

    ADS  Google Scholar 

  52. 52.

    Bein, B. M. et al. Impulsive acceleration of coronal mass ejections. I. Statistics and coronal mass ejection source region characteristics. Astrophys. J. 738, 191 (2011).

    ADS  Google Scholar 

  53. 53.

    Bein, B. M., Berkebile-Stoiser, S., Veronig, A. M., Temmer, M. & Vršnak, B. Impulsive acceleration of coronal mass ejections. II. Relation to soft X-ray flares and filament eruptions. Astrophys. J. 755, 44 (2012).

    ADS  Google Scholar 

  54. 54.

    D’Huys, E., Seaton, D. B., De Groof, A., Berghmans, D. & Poedts, S. Solar signatures and eruption mechanism of the August 14, 2010 coronal mass ejection (CME). J. Space Weather Space Clim. 7, A7 (2017).

    Google Scholar 

  55. 55.

    Veronig, A. M. et al. Genesis and impulsive evolution of the 2017 September 10 coronal mass ejection. Astrophys. J. 868, 107 (2018).

    ADS  Google Scholar 

  56. 56.

    Savage, S. L., McKenzie, D. E., Reeves, K. K., Forbes, T. G. & Longcope, D. W. Reconnection outflows and current sheet observed with Hinode/XRT in the 2008 April 9 ‘Cartwheel CME’ flare. Astrophys. J. 722, 329–342 (2010).

    ADS  Google Scholar 

  57. 57.

    Warren, H. P. et al. Spectroscopic observations of current sheet formation and evolution. Astrophys. J. 854, 122 (2018).

    ADS  Google Scholar 

  58. 58.

    Longcope, D., Unverferth, J., Klein, C., McCarthy, M. & Priest, E. Evidence for downflows in the narrow plasma sheet of 2017 September 10 and their significance for flare reconnection. Astrophys. J. 868, 148 (2018).

    ADS  Google Scholar 

  59. 59.

    Seaton, D. B., Bartz, A. E. & Darnel, J. M. Observations of the formation, development, and structure of a current sheet in an eruptive solar flare. Astrophys. J. 835, 139 (2017).

    ADS  Google Scholar 

  60. 60.

    Landi, E., Habbal, S. R. & Tomczyk, S. Coronal plasma diagnostics from ground-based observations. J. Geophys. Res. Space Phys. 121, 8237–8249 (2016).

    ADS  Google Scholar 

  61. 61.

    Seaton, D. B. et al. in The GOES-R Series (eds Goodman, S., Timothy, J. et al.) 219–232 (Elsevier, 2020).

  62. 62.

    Savitzky, A. & Golay, M. J. E. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).

    ADS  Google Scholar 

  63. 63.

    Shekhar, C. On simplified application of multidimensional Savitzky–Golay filters and differentiators. AIP Conf. Proc. 1705, 020014 (2016).

    Google Scholar 

  64. 64.

    savitzkygolay (Leifer Lab, 2018);

  65. 65.

    Druckmüllerová, H., Morgan, H. & Habbal, S. R. Enhancing coronal structures with the Fourier normalizing-radial-graded filter. Astrophys. J. 737, 88 (2011).

    ADS  Google Scholar 

  66. 66.

    Freeland, S. L. & Handy, B. N. Data analysis with the SolarSoft system. Sol. Phys. 182, 497–500 (1998).

    ADS  Google Scholar 

  67. 67.

    GOES-R Series Level 1b Solar Ultraviolet Imager (SUVI) Product in FITS Format (NOAA, 2020);

Download references


We acknowledge our colleagues at the GOES-R Program Office, on the SUVI team at Lockheed Martin, and at NOAA’s National Centers for Environmental Information and Space Weather Prediction Center for providing support and helpful input during the development of this campaign and during the analysis of results, particularly P. C. Sullivan, G. J. Comeyne, M. Shaw-Lecert, R. R. Minor, R. Redmon, J. Machol, L. Rachmeler and S. Hill. D.B.S. and J.M.H. acknowledge support for GOES-R activities at the Cooperative Institute for Research in Environmental Sciences via NOAA cooperative agreement no. NA17OAR4320101, and D.B.S. acknowledges support from NASA grant no. 80NSSC20K1283. A.C. acknowledges funding from NASA grant no. NNX15AQ68G, and A.C. and C.E.D. acknowledge NASA PUNCH contract no. 80GSFC18C0014.

Author information




D.B.S. led the data analysis, image processing and visualization efforts. J.M.H. developed image processing software. S.K.T. and A.K. developed the campaign and assisted with its implementation, data acquisition and analysis. A.C. and C.E.D. assisted with interpretation of the data and development of data visualizations. N.E.H., R.S. and G.S. developed software for SUVI data calibration and assembly of mosaics and assisted with interpretation of data. D.B.S. and A.C. led the writing of the manuscript, with contributions from the other authors.

Corresponding author

Correspondence to Daniel B. Seaton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Astronomy thanks Astrid Veronig and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1 and legends/captions for Supplementary Videos 1–4.

Supplementary Video 1

Composite SUVI movie at 171 Å (gold) and 195 Å (blue). The labelled panels in the corresponding Fig. 2 highlight dynamic features and events that are of particular interest. Timestamps permit the identification of these events within the movie.

Supplementary Video 2

Two-panel rendering of Video 1, at 171 Å (gold) and 195 Å (blue).

Supplementary Video 3

SUVI 195 Å and visible-light LASCO C2 coronagraph composite movie. The labelled panels in the corresponding Fig. 3 highlight dynamic features and events that are of particular interest. Timestamps permit the identification of these events within the movie.

Supplementary Video 4

Uncropped rendering of SUVI 195 Å frames from Video 3. Images are presented in natural SUVI camera coordinates, with celestial north oriented upwards and solar north rotated roughly 20° counterclockwise from vertical.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seaton, D.B., Hughes, J.M., Tadikonda, S.K. et al. The Sun’s dynamic extended corona observed in extreme ultraviolet. Nat Astron 5, 1029–1035 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing