Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Using bioelectrical impedance analysis in children and adolescents: Pressing issues


Single- and multifrequency bioelectrical impedance analysis (BIA) has gained popularity as a tool to assess body composition and health status of children and adolescents, but many questions and misconceptions remain. This review addresses pressing issues researchers and health care providers may encounter when using BIA in the young population. The importance of choosing population-specific and device-specific equations to estimate body composition as well as the use of BIA in longitudinal analyses are discussed. When specific equations are not available, raw bioimpedance values (i.e., resistance, reactance, and impedance) can be used to compute bioimpedance parameters, such as phase angle, impedance ratio, and bioelectrical impedance vector analysis. As interpreting these parameters is challenging, suggestions are provided on the use of reference data, cut-off points, and adjustment factors. Furthermore, unsolved technical and analytical issues are listed. Based on existing issues and potential for future development, a greater interaction between industry and academic researchers to improve the validity of BIA measurements among children and adolescents across their developmental stages is encouraged.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Selected frequently asked questions about the use of bioelectrical impedance analysis in pediatrics.
Fig. 2: Assessment of bioimpedance parameters using standing devices is challenging in children across their developmental stages.
Fig. 3: A SWOT analysis for the use of bioelectrical impedance analysis (BIA) in children and adolescents.


  1. 1.

    Kyle UG, Earthman CP, Pichard C, Coss-Bu JA. Body composition during growth in children: Limitations and perspectives of bioelectrical impedance analysis. Eur J Clin Nutr. 2015;69:1298–305.

    CAS  PubMed  Article  Google Scholar 

  2. 2.

    Mulasi U, Kuchnia AJ, Cole AJ, Earthman CP. Bioimpedance at the bedside: Current applications, limitations, and opportunities. Nutr Clin Pr. 2015;30:180–93.

    Article  Google Scholar 

  3. 3.

    Heymsfield SB, Wang Z, Baumgartner RN, Ross R. Human body composition: Advances in models and methods. Annu Rev Nutr. 1997;17:527–58.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Earthman CP. Body composition tools for assessment of adult malnutrition at the bedside: A tutorial on research considerations and clinical applications. J Parenter Enter Nutr. 2015;39:787–822.

    Article  Google Scholar 

  5. 5.

    Jaffrin MY, Morel H. Body fluid volumes measurements by impedance: A review of bioimpedance spectroscopy (BIS) and bioimpedance analysis (BIA) methods. Med Eng Phys. 2008;30:1257–69.

    PubMed  Article  Google Scholar 

  6. 6.

    Lyons‐Reid J, Derraik JGB, Ward LC, Tint M, Kenealy T, Cutfield WS. Bioelectrical impedance analysis for assessment of body composition in infants and young children‐A systematic literature review. Clin Obes. 2021;11:e12441.

    PubMed  Article  Google Scholar 

  7. 7.

    Talma H, Chinapaw MJM, Bakker B, Hirasing RA, Terwee CB, Altenburg TM. Bioelectrical impedance analysis to estimate body composition in children and adolescents: A systematic review and evidence appraisal of validity, responsiveness, reliability and measurement error. Obes Rev. 2013;14:895–905.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Orsso CE, Rubin DA, Silva MIB, Heymsfield SB, Gonzalez MC, Prado CM, et al. Assessment of body composition in pediatric overweight and obesity: A systematic review of the reliability and validity of common techniques. Obes Rev. 2020;21:e13041.

    PubMed  Article  Google Scholar 

  9. 9.

    Brantlov S, Jødal L, Lange A, Rittig S, Ward LC. Standardisation of bioelectrical impedance analysis for the estimation of body composition in healthy paediatric populations: A systematic review. J Med Eng Technol. 2017;41:460–79.

    PubMed  Article  Google Scholar 

  10. 10.

    Gonzalez MC. Using bioelectrical impedance analysis for body composition assessment: Sorting out some misunderstandings. J Parenter Enter Nutr. 2019;43:954–5.

    Article  Google Scholar 

  11. 11.

    Lyons-Reid J, Ward LC, Kenealy T, Cutfield W. Bioelectrical impedance analysis — An easy tool for quantifying body composition in infancy? Nutrients. 2020;12:920.

    PubMed Central  Article  PubMed  Google Scholar 

  12. 12.

    Brantlov S, Ward LC, Jødal L, Rittig S, Lange A. Critical factors and their impact on bioelectrical impedance analysis in children: A review. J Med Eng Technol. 2017;41:22–35.

    PubMed  Article  Google Scholar 

  13. 13.

    Sun SS, Chumlea WC, Heymsfield SB, Lukaski HC, Schoeller D, Friedl K, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr. 2003;77:331–40.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Wells JCK, Williams JE, Chomtho S, Darch T, Grijalva-Eternod C, Kennedy K, et al. Pediatric reference data for lean tissue properties: Density and hydration from age 5 to 20 y. Am J Clin Nutr. 2010;91:610–8.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Utczás K, Tróznai Z, Pálinkás G, Kalabiska I, Petridis L. How length sizes affect body composition estimation in adolescent athletes using bioelectrical impedance. J Sport Sci Med. 2020;19:577–84.

    Google Scholar 

  16. 16.

    Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35:1169–75.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Thivel D, Verney J, Miguet M, Masurier J, Cardenoux C, Lambert C, et al. The accuracy of bioelectrical impedance to track body composition changes depends on the degree of obesity in adolescents with obesity. Nutr Res. 2018;54:60–68.

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Orsso CE, Tibaes JRB, Oliveira CLP, Rubin DA, Field CJ, Heymsfield SB, et al. Low muscle mass and strength in pediatrics patients: Why should we care? Clin Nutr. 2019;38:2002–15.

    PubMed  Article  Google Scholar 

  19. 19.

    Lazzer S, Bedogni G, Agosti F, De Col A, Mornati D, Sartorio A. Comparison of dual-energy X-ray absorptiometry, air displacement plethysmography and bioelectrical impedance analysis for the assessment of body composition in severely obese Caucasian children and adolescents. Br J Nutr. 2008;100:918–24.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Steinberg A, Manlhiot C, Li P, Metivier E, Pencharz PB, McCrindle BW, et al. Development and validation of bioelectrical impedance analysis equations in adolescents with severe obesity. J Nutr. 2019;149:1288–93.

    PubMed  Article  Google Scholar 

  21. 21.

    Silva AM, Matias CN, Nunes CL, Santos DA, Marini E, Lukaski HC, et al. Lack of agreement of in vivo raw bioimpedance measurements obtained from two single and multi-frequency bioelectrical impedance devices. Eur J Clin Nutr. 2019;73:1077–83.

    PubMed  Article  Google Scholar 

  22. 22.

    Barbosa-Silva TG, Gonzalez MC, Bielemann RM, Santos LP, Menezes AMB. Think globally, act locally: The importance of population-specific bioelectrical impedance analysis prediction equations for muscle mass assessment. J Parenter Enter Nutr. 2020;44:1338–46.

    CAS  Article  Google Scholar 

  23. 23.

    Stroud DB. What does bioimpedance measure? Proc Int Conf Bioelectromagn. 1998;64:43.

    Article  Google Scholar 

  24. 24.

    Sheean P, Gonzalez MC, Prado CM, McKeever L, Hall AM, Braunschweig CA. American society for parenteral and enteral nutrition clinical guidelines: The validity of body composition assessment in clinical populations. J Parenter Enter Nutr. 2020;44:12–43.

    Article  Google Scholar 

  25. 25.

    Cleary J, Daniells S, Okely AD, Batterham M, Nicholls J. Predictive validity of four bioelectrical impedance equations in determining percent fat mass in overweight and obese children. J Am Diet Assoc. 2008;108:136–9.

    PubMed  Article  Google Scholar 

  26. 26.

    Fields DA, Goran MI. Body composition techniques and the four-compartment model in children. J Appl Physiol. 2000;89:613–20.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Dung NQ, Fusch G, Armbrust S, Jochum F, Fusch C. Use of bioelectrical impedance analysis and anthropometry to measure fat-free mass in children and adolescents with Crohn disease. J Pediatr Gastroenterol Nutr. 2007;44:130–5.

    PubMed  Article  Google Scholar 

  28. 28.

    Gonzalez MC, Orlandi SP, Santos LP, Barros AJD. Body composition using bioelectrical impedance: Development and validation of a predictive equation for fat-free mass in a middle-income country. Clin Nutr. 2019;38:2175–9.

    PubMed  Article  Google Scholar 

  29. 29.

    Collins CT, Reid J, Makrides M, Lingwood BE, McPhee AJ, Morris SA, et al. Prediction of body water compartments in preterm infants by bioelectrical impedance spectroscopy. Eur J Clin Nutr. 2013;67:S47–S53.

    PubMed  Article  Google Scholar 

  30. 30.

    Ellis KJ, Wong WW. Human hydrometry: Comparison of multifrequency bioelectrical impedance with 2H2O and bromine dilution. J Appl Physiol. 1998;85:1056–62.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Ellis KJ, Shypailo RJ, Wong WW. Measurement of body water by multifrequency bioelectrical impedance spectroscopy in a multiethnic pediatric population. Am J Clin Nutr. 1999;70:847–53.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Ward LC, Isenring E, Dyer JM, Kagawa M, Essex T. Resistivity coefficients for body composition analysis using bioimpedance spectroscopy: Effects of body dominance and mixture theory algorithm. Physiol Meas. 2015;36:1529–49.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Van Eyck A, Eerens S, Trouet D, Lauwers E, Wouters K, De Winter BY, et al. Body composition monitoring in children and adolescents: Reproducibility and reference values. Eur J Pediatr 2021.

  34. 34.

    Meredith-Jones KA, Williams SM, Taylor RW. Bioelectrical impedance as a measure of change in body composition in young children. Pediatr Obes. 2015;10:252–9.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Lewy V, Danadian K, Arslanian S. Determination of body composition in African-American children: Validation of bioelectrical impedence with dual energy X-ray absorptiometry. J Pediatr Endocrinol Metab. 1999;12:443–8.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Suprasongsin C, Kalhan S, Arslanian S. Determination of body composition in children and adolescents: Validation of bioelectrical impedance with isotope dilution technique. J Pediatr Endocr Met. 1995;8:103–9.

    CAS  Google Scholar 

  37. 37.

    Elberg J, McDuffie J, Sebring N, Salaita C, Keil M, Robotham D, et al. Comparison of methods to assess change in children’s body composition. Am J Clin Nutr. 2004;80:64–69.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Roche S, Lara-Pompa NE, Macdonald S, Fawbert K, Valente J, Williams JE, et al. Bioelectric impedance vector analysis (BIVA) in hospitalised children; predictors and associations with clinical outcomes. Eur J Clin Nutr. 2019;73:1431–40.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Brantlov S, Jødal L, Andersen RF, Lange A, Rittig S, Ward LC. An evaluation of phase angle, bioelectrical impedance vector analysis and impedance ratio for the assessment of disease status in children with nephrotic syndrome. BMC Nephrol. 2019;20:331.

    PubMed  PubMed Central  Article  Google Scholar 

  40. 40.

    Azevedo ZMA, Santos Junior BD, Ramos EG, Salú MDS, Mancino da Luz Caixeta D, Lima-Setta F, et al. The importance of bioelectrical impedance in the critical pediatric patient. Clin Nutr. 2020;39:1188–94.

    PubMed  Article  Google Scholar 

  41. 41.

    Marino LV, Meyer R, Johnson M, Newell C, Johnstone C, Magee A, et al. Bioimpedance spectroscopy measurements of phase angle and height for age are predictive of outcome in children following surgery for congenital heart disease. Clin Nutr. 2018;37:1430–6.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Bourdon C, Bartels RH, Chimwezi E, Kool J, Chidzalo K, Perot L, et al. The clinical use of longitudinal bio-electrical impedance vector analysis in assessing stabilization of children with severe acute malnutrition. Clin Nutr. 2021;40:2078–90.

    PubMed  Article  Google Scholar 

  43. 43.

    Girma T, Kæstel P, Mølgaard C, Ritz C, Andersen GS, Michaelsen KF, et al. Utility of bio-electrical impedance vector analysis for monitoring treatment of severe acute malnutrition in children. Clin Nutr. 2021;40:642–631.

    Article  Google Scholar 

  44. 44.

    Hauschild DB, Barbosa E, Moreira EAM, Ludwig Neto N, Platt VB, Piacentini Filho E, et al. Nutrition status parameters and hydration status by bioelectrical impedance vector analysis were associated with lung function impairment in children and adolescents with cystic fibrosis. Nutr Clin Pr. 2016;31:378–86.

    Article  Google Scholar 

  45. 45.

    Calcaterra V, Cena H, Manuelli M, Sacchi L, Girgenti V, Larizza C, et al. Body hydration assessment using bioelectrical impedance vector analysis in neurologically impaired children. Eur J Clin Nutr. 2019;73:1649–52.

    PubMed  Article  Google Scholar 

  46. 46.

    Jensen B, Braun W, Both M, Gallagher D, Clark P, González DL, et al. Configuration of bioelectrical impedance measurements affects results for phase angle. Med Eng Phys. 2020;84:10–15.

    PubMed  Article  Google Scholar 

  47. 47.

    Lyons-Reid J, Ward LC, Tint MT, Kenealy T, Godfrey KM, Chan SY, et al. The influence of body position on bioelectrical impedance spectroscopy measurements in young children. Sci Rep. 2021;11:10346.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Norman K, Stobäus N, Pirlich M, Bosy-Westphal A. Bioelectrical phase angle and impedance vector analysis - Clinical relevance and applicability of impedance parameters. Clin Nutr. 2012;31:854–61.

    PubMed  PubMed Central  Article  Google Scholar 

  49. 49.

    Kuchnia AJ, Teigen LM, Cole AJ, Mulasi U, Gonzalez MC, Heymsfield SB, et al. Phase angle and impedance ratio: Reference cut-points from the United States National Health and Nutrition Examination Survey 1999–2004 from bioimpedance spectroscopy data. J Parenter Enter Nutr. 2017;41:1310–5.

    Article  Google Scholar 

  50. 50.

    Farias CLA, Campos DJ, Bonfin CMS, Vilela RM. Phase angle from BIA as a prognostic and nutritional status tool for children and adolescents undergoing hematopoietic stem cell transplantation. Clin Nutr. 2013;32:420–5.

    PubMed  Article  Google Scholar 

  51. 51.

    Impedimed. SOZO System - Instructions for use. 2019. (accessed 28 Jul 2021).

  52. 52.

    Wells JCK, Williams JE, Quek RY, Fewtrell MS. Bio-electrical impedance vector analysis: testing Piccoli’s model against objective body composition data in children and adolescents. Eur J Clin Nutr. 2019;73:887–95.

    PubMed  Article  Google Scholar 

  53. 53.

    Kriemler S, Puder J, Zahner L, Roth R, Braun-Fahrländer C, Bedogni G. Cross-validation of bioelectrical impedance analysis for the assessment of body composition in a representative sample of 6- to 13-year-old children. Eur J Clin Nutr. 2009;63:619–26.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Fuller NJ, Fewtrell MS, Dewit O, Elia M, Wells JCK. Segmental bioelectrical impedance analysis in children aged 8–12y: 1. The assessment of whole-body composition. Int J Obes. 2002;26:684–91.

    CAS  Article  Google Scholar 

  55. 55.

    Fuller NJ, Fewtrell MS, Dewit O, Elia M, Wells JCK. Segmental bioelectrical impedance analysis in children aged 8–12y: 2. The assessment of regional body composition and muscle mass. Int J Obes. 2002;26:692–700.

    CAS  Article  Google Scholar 

  56. 56.

    Wells JC, Williams JE, Ward LC, Fewtrell MS. Utility of specific bioelectrical impedance vector analysis for the assessment of body composition in children. Clin Nutr. 2021;40:1147–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  57. 57.

    Bosy-Westphal A, Jensen B, Braun W, Pourhassan M, Gallagher D, Müller MJ. Quantification of whole-body and segmental skeletal muscle mass using phase-sensitive 8-electrode medical bioelectrical impedance devices. Eur J Clin Nutr. 2017;71:1061–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. 58.

    NIH Consensus Statement: Bioelectrical impedance analysis in body composition measurement. 1996.

  59. 59.

    Gallagher D, Andres A, Fields DA, Evans WJ, Kuczmarski R, Lowe WL, et al. Body composition measurements from birth through 5 Years: Challenges, gaps, and existing & emerging technologies—A national institutes of health workshop. Obes Rev. 2020;21:e13033.

    PubMed  PubMed Central  Article  Google Scholar 

Download references


We thank Bianca Caroline Orsso for her assistance with the illustrations. A portion of this work has been funded by the generous support of the Stollery Children’s Hospital Foundation through the Women and Children’s Health Research Institute (RES0040520).

Author information




CEO and CMP, designed research; CEO, conducted research; CEO, writing—original draft preparation; CEO, CMG, MJM, AMH, and CMP, writing—review and editing. All authors have read and approved the final paper.

Corresponding author

Correspondence to Camila E. Orsso.

Ethics declarations

Competing interests

C.E.O declares no competing financial interests. MCG reports receiving honoraria from Abbott Nutrition and Nestle Health Science, outside the scope of the submitted work. MJM is employed by Seca gmbh & co. kg. AMH has received grant funding from Rhythm pharmaceuticals and Levo therapeutics outside the scope of the submitted work. CMP reports receiving honoraria and/or paid consultancy from Abbott Nutrition, Nutricia, Nestle Health Science, Fresenius Kabi, Pfizer, and Helsinn outside the scope of the submitted work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Orsso, C.E., Gonzalez, M.C., Maisch, M.J. et al. Using bioelectrical impedance analysis in children and adolescents: Pressing issues. Eur J Clin Nutr (2021).

Download citation


Quick links