Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Biological recognition at interfaces involving dendritic molecules

Abstract

Dendrimers, a type of dendritic molecule, have a well-defined structure with a homogeneous molecular weight and precise multiple terminal groups. These characteristics are favorable for both research and development, which require accuracy and multivalency. This review focuses on various dendrimers as interfacial materials and reviews their biological functionality, as represented by biological recognition, based on our previous research. At the surface of a gold substrate, the immobilized dendrimer with closely packed terminals was inactive to proteins, but the immobilized dendrimer with loosely packed terminals and many signature ligands, such as saccharides, was highly active to specific proteins with multivalent interactions. Additionally, the loosely packed glycodendrimer controlled the biological functionality of proteins by strictly regulated multivalent interactions. Likewise, an amphiphilic glycodendrimer gave a dynamic biointerface by self-assembly in aqueous media and represented biological functionality similar to that on the surface of the substrate. Biointerfaces involving dendrimers have different useful characteristics from linear polymers on the surface or in solution, and promise to provide a new approach for the development of superior biomaterials and procedures to elucidate and control vital phenomena.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Nel EA, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P, et al. Understanding Biophysicochemical Interactions at the nano-bio Interface. Nat Mater. 2009;8:543–57.

    CAS  Article  Google Scholar 

  2. Walsh TR, Knecht MR. Biointerface structural effects on the properties and applications of bioinspired peptide-based nanomaterials. Chem Rev. 2017;117:12641–704.

    CAS  Article  Google Scholar 

  3. Sun T, Qing G, Su B, Jiang L. Functional biointerface materials inspired from nature. Chem Soc Rev. 2011;40:2909–21.

    CAS  Article  Google Scholar 

  4. Raynor JE, Capadona JR, Collard DM, Petrie TA, García AJ. Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials (review). Biointerphases. 2009;4:FA3–FA16.

    CAS  Article  Google Scholar 

  5. Chaki NK, Vijayamohanan K. Self-assembled monolayers as a tunable platform for biosensor applications. Biosens Bioelectr. 2002;17:1–12.

    CAS  Article  Google Scholar 

  6. Wink T, van Zuilen SJ, Bult A, van Bennekom WP. Self-assembled monolayers for biosensors. Analyst. 1997;122:43R–50R.

    CAS  Article  Google Scholar 

  7. Love JC, Estroff LA, Kriebel JK, Nuzzo RG, Whitesides GM. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem Rev. 2005;105:1103–70.

    CAS  Article  Google Scholar 

  8. Zhao B, Brittain WJ. Polymer brushes: surface-immobilized macromolecules. Prog Polym Sci. 2000;25:677–710.

    CAS  Article  Google Scholar 

  9. Nagasaki Y. Construction of a densely poly(ethylene glycol)-chain-tethered surface and its performance. Polym J. 2011;43:949–58.

    CAS  Article  Google Scholar 

  10. Xu Y, Takai M, Ishihara K. Protein adsorption and cell adhesion on cationic, neutral, and anionic 2-methacryloyloxyethyl phosphorylcholine copolymer surfaces. Biomaterials. 2009;30:4930–8.

    CAS  Article  Google Scholar 

  11. Peng L, Wu CS, You M, Han D, Chen Y, Fu T, et al. Engineering and applications of DNA-grafted polymer materials. Chem Sci. 2013;4:1928–38.

    CAS  Article  Google Scholar 

  12. Krishnamoorthy M, Hakobyan S, Ramstedt M, Gautrot JE. Surface-initiated polymer brushes in the biomedical field: applications in membrane science, biosensing, cell culture, regenerative medicine and antibacterial coatings. Chem Rev. 2014;114:10976–1026.

    CAS  Article  Google Scholar 

  13. Advincula RC, Brittain WJ, Caster KC, Rühe J. Polymer Brushes: Synthesis, Characterization, Applications. New Jersey: John Wiley & Sons, Inc.; 2006.

    Google Scholar 

  14. Stöbener DD, Paulus F, Welle A, Wöll C, Haag R. Dynamic protein adsorption onto dendritic polyglycerol sulfate self-assembled monolayers. Langmuir. 2018;34:10302–8.

    Article  Google Scholar 

  15. Duan X, Sheardown H. Dendrimer crosslinked collagen as a corneal tissue engineering scaffold: mechanical properties and corneal epithelial cell interactions. Biomaterials. 2006;27:4608–17.

    CAS  Article  Google Scholar 

  16. Okuro K, Kinbara K, Tsumoto K, Ishii N, Aida T. Molecular glues carrying multiple guanidinium ion pendants via an oligoether spacer: stabilization of microtubules against depolymerization. J Am Chem Soc. 2009;131:1626–7.

    CAS  Article  Google Scholar 

  17. Ooya T, Lee H. Amino acid-dependent host–guest interaction: polyglycerol dendrimer of generation 3 encapsulates amino acids bearing two amino groups. ChemNanoMat. 2015;1:264–9.

    CAS  Article  Google Scholar 

  18. Tamaki M, Taguchi T, Nakabayashi S, Mori K, Kitajyo Y, Sakai R, et al. Hyperbranched 5,6-glucan as reducing sugar ball. Polym Chem. 2010;1:82–92.

    CAS  Article  Google Scholar 

  19. Yan J-J, Sun J-T, You Y-Z, Wu D-C, Hong C-Y. Growing hyperbranched polymers using natural sunlight. Sci Rep. 2013;3:2841.

    Article  Google Scholar 

  20. Charles S, Vasanthan N, Kwon D, Sekosan D, Ghosh S. Surface modification of poly(amidoamine) (PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett. 2012;53:6670–5.

    CAS  Article  Google Scholar 

  21. Tamaki M, Fukushima D, Kojima C. Dual pH-sensitive and UCST-type thermosensitive dendrimers: phenylalanine-modified polyamidoamine dendrimers with carboxyl termini. RSC Adv. 2018;8:28147–51.

    CAS  Article  Google Scholar 

  22. Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW, et al. Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett. 2014;9:247.

    Article  Google Scholar 

  23. Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S, et al. New class of polymers: starburst-dendritic macromolecules. Polym J. 1985;17:117–32.

    CAS  Article  Google Scholar 

  24. Kono K. Dendrimer-based bionanomaterials produced by surface modification, assembly and hybrid formation. Polym J. 2012;44:531–40.

    CAS  Article  Google Scholar 

  25. Tokuhisa H, Zhao M, Baker LA, Phan VT, Dermody DL, Garcia ME, et al. Preparation and characterization of dendrimer monolayers and dendrimer-alkanethiol mixed monolayers adsorbed to gold. J Am Chem Soc. 1998;120:4492–501.

    CAS  Article  Google Scholar 

  26. Hierlemann A, Campbell JK, Baker LA, Crooks RM, Ricco AJ. Structural distortion of dendrimers on gold surfaces: a tapping-mode AFM investigation. J Am Chem Soc. 1998;120:5323–4.

    CAS  Article  Google Scholar 

  27. Matsumoto E, Fukuda T, Miura Y. Bioinert surface to protein adsorption with higher generation of dendrimer SAMs. Colloids Surf B. 2011;84:280–4.

    CAS  Article  Google Scholar 

  28. Fukuda T, Matsumoto E, Yui N, Miura Y. Peculiar wettability based on orientational change of self-assembled hemispherical PAMAM dendrimer layer. Chem Lett. 2010;39:923–5.

    CAS  Article  Google Scholar 

  29. Ulman A. Formation and structure of self-assembled monolayers. Chem Rev. 1996;96:1533–54.

    CAS  Article  Google Scholar 

  30. Miura Y, Kimura S, Imanishi Y, Umemura J. Self-assembly of α-helix peptide/crown ether conjugate upon complexation with ammonium-terminated alkanethiolate. Langmuir. 1998;14:2761–7.

    CAS  Article  Google Scholar 

  31. Fishman PH. Role of membrane gangliosides in the binding and action of bacterial toxins. J Membr Biol. 1982;69:85–97.

    CAS  Article  Google Scholar 

  32. Schnaar RL. Glycosphingolipids in cell surface recognition. Glycobiology. 1991;1:477–85.

    CAS  Article  Google Scholar 

  33. Tayler ME, Drickamer K. Introduction to Glycobiology. London: Oxford University Press; 2002.

    Google Scholar 

  34. Lee YC, Lee RT. Carbohydrate–protein Interactions: basis of glycobiology. Acc Chem Res. 1995;28:321–7.

    CAS  Article  Google Scholar 

  35. Kempe K, Xiang SD, Wilson P, Rahim MA, Ju Y, Whittaker MR, et al. Engineered hydrogen-bonded glycopolymer capsules and their interactions with antigen presenting cells. ACS Appl Mater Interfaces. 2017;9:6444–52.

    CAS  Article  Google Scholar 

  36. Kobayashi A, Akaike T, Kobayashi K, Sumitomo H. Enhanced adhesion and survival efficiency of liver cells in culture dishes coated with a lactose-carrying styrene homopolymer. Makromol Chem Rapid Commun. 1986;7:645–50.

    CAS  Article  Google Scholar 

  37. Chikae M, Fukuda T, Kerman K, Idegami K, Miura Y, Tamiya E. Amyloid-β detection with saccharide immobilized gold nanoparticle on carbon electrode. Bioelectrochemistry. 2008;74:118–23.

    CAS  Article  Google Scholar 

  38. Lu H, Xiang L, Cui X, Liu J, Wang Y, Narain Y, et al. Molecular weight dependence of synthetic glycopolymers on flocculation and dewatering of fine particles. Langmuir. 2016;32:11615–22.

    CAS  Article  Google Scholar 

  39. Miura, Y, Hoshino, Y & Seto, H. Glycopolymer nanobiotechnology. Chem Rev. 2015;116:1673–92.

  40. Tanaka T, Okamoto M. Reversible temperature-responsive and lectin-recognizing glycosylated block copolymers synthesized by RAFT polymerization. Polym J. 2018;50:523–31.

    CAS  Article  Google Scholar 

  41. Jono K, Nagao M, Oh T, Sonoda S, Hoshino Y, Miura Y. Controlling the lectin recognition of glycopolymers via distance arrangement of sugar blocks. Chem Commun. 2018;54:82–85.

    CAS  Article  Google Scholar 

  42. Das PK, Dean DN, Fogel AL, Liu F, Abel BA, McCormick CL, et al. Aqueous RAFT synthesis of glycopolymers for determination of saccharide structure and concentration effects on amyloid β aggregation. Biomacromolecules. 2017;18:3359–66.

    CAS  Article  Google Scholar 

  43. Aoi K, Itoh K, Okada M. Globular carbohydrate macromolecules “Sugar Balls”. 1. Synthesis of novel sugar-persubstituted poly(amido amine) dendrimers. Macromolecules. 1995;28:5391–3.

    CAS  Article  Google Scholar 

  44. Matsuoka K, Terabatake M, Esumi Y, Hatano K, Terunuma D, Kuzuhara H. Carbosilane dendrimers bearing globotriaoses: construction of a series of carbosilane dendrimers bearing globotriaoses. Biomacromolecules. 2006;7:2284–90.

    CAS  Article  Google Scholar 

  45. Singer SJ, Nicolson GL. The fluid mosaic model of the structure of cell membranes. Science. 1972;175:720–31.

    CAS  Article  Google Scholar 

  46. Nicolson GL. The fluid-mosaic model of membrane structure: still relevant to understanding the structure, function and dynamics of biological membranes after more than 40 years. Biochim Biophys Acta. 2014;1838:1451–66.

    CAS  Article  Google Scholar 

  47. Simons K, Ikonen E. Functional rafts in cell membranes. Nature. 1997;387:569–72.

    CAS  Article  Google Scholar 

  48. Fukuda T, Onogi S, Miura Y. Dendritic sugar-microarrays by click chemistry. Thin Solid Films. 2009;518:880–8.

    CAS  Article  Google Scholar 

  49. Fukuda T, Miura Y. Biofunctional characteristics of dendritic glycocluster modified surfaces. Kobunshi Ronbunshu. 2017;74:1–9.

    CAS  Article  Google Scholar 

  50. Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev. 1998;98:637–74.

    CAS  Article  Google Scholar 

  51. Wang B, Boons G-J. Carbohydrate Recognition-Biological Problems, Methods, and Applications. New Jersey: John Wiley & Sons, Inc.; 2011.

    Book  Google Scholar 

  52. Kumar V, Turnbull WB. Carbohydrate inhibitors of cholera toxin. Beilstein J Org Chem. 2018;14:484–98.

    CAS  Article  Google Scholar 

  53. Merritt EA, Hol WGJ. AB5 toxins. Curr Opin Struct Biol. 1995;5:165–71.

    CAS  Article  Google Scholar 

  54. Beddoe T, Paton AW, Le Nours J, Rossjohn J, Paton JC. Structure, biological functions and applications of the AB5 toxins. Trends Biochem Sci. 2010;35:411–8.

    CAS  Article  Google Scholar 

  55. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81:741–66.

    CAS  Article  Google Scholar 

  56. Matsubara T, Kojima T, Fukuda R, Iijma K, Hirai M, Yamamoto N, et al. Responsibility of lipid compositions for the amyloid β assembly induced by ganglioside nanoclusters in mouse synaptosomal membranes. Polym J. 2018;50:745–52.

    CAS  Article  Google Scholar 

  57. Yanagisawa K, Odaka A, Suzuki N, Ihara Y. GM1 ganglioside-bound amyloid β-protein (Aβ): a possible form of preamyloid in Alzheimer’s disease. Nat Med. 1995;1:1062–6.

    CAS  Article  Google Scholar 

  58. Ward. RV, Jennings KH, Jepras R, Neville W, Owen DE, Hawkins J, et al. Fractionation and characterization of oligomeric, protofibrillar and fibrillar forms of β-amyloid peptide. Biochem J. 2000;348:137–44.

    CAS  Article  Google Scholar 

  59. Klein WL. Aβ toxicity in alzheimer’s disease: globular oligomers (ADDLs) as new vaccine and drug targets. Neurochem Int. 2002;41:345–52.

    CAS  Article  Google Scholar 

  60. Hoshi M, Sato M, Matsumoto S, Noguchi A, Yasutake K, Yoshida N, et al. Spherical aggregates of β -amyloid (Amylospheroid) show high neurotoxicity and activate tau protein kinase I/glycogen synthase kinase-3. Proc Natl Acad Sci USA. 2003;100:6370–5.

    CAS  Article  Google Scholar 

  61. Pimplikar SW. Reassessing the amyloid cascade hypothesis of Alzheimer’s disease. Int J Biochem Cell Biol. 2009;41:1261–8.

    CAS  Article  Google Scholar 

  62. Karran E, De Strooper B. The amyloid cascade hypothesis: are we poised for success or failure? J Neurochem. 2016;139:237–52.

    CAS  Article  Google Scholar 

  63. Fukuda T, Matsumoto E, Onogi S, Miura Y. Aggregation of Alzheimer amyloid β peptide (1–42) on the multivalent sulfonated sugar interface. Bioconjugate Chem. 2010;21:1079–86.

    CAS  Article  Google Scholar 

  64. Giulian D, Haverkamp LJ, Yu J, Karshin W, Tom D, Li J, et al. The HHQK domain of β-amyloid provides a structural basis for the immunopathology of Alzheimer’s disease. J Biol Chem. 1998;273:29719–26.

    CAS  Article  Google Scholar 

  65. Sengupta U, Nilson AN, Kayed R. The role of amyloid-β oligomers in toxicity, propagation, and immunotherapy. EBioMedicine. 2016;6:42–49.

    Article  Google Scholar 

  66. Fukuda T, Matsumoto E, Miura Y. Interaction between multimeric sulfated saccharides and Alzheimer amyloid β (1–42). Chem Lett. 2015;44:1482–4.

    CAS  Article  Google Scholar 

  67. Miura Y, Onogi S, Fukuda T. Syntheses of sulfo-glycodendrimers using click chemistry and their biological evaluation. Molecules. 2012;17:11877–96.

    CAS  Article  Google Scholar 

  68. Levine H III. Thioflavine T interaction with synthetic Alzheimer’s disease β-amyloid peptides: detection of amyloid aggregation in solution. Prot Sci. 1993;2:404–10.

    CAS  Article  Google Scholar 

  69. Krebs MRH, Bromley MRH, Donald AM. The binding of thioflavin-T to amyloid fibrils: localization and implications. J Struct Biol. 2005;149:30–37.

    CAS  Article  Google Scholar 

  70. McLaurin J, Chakrabartty A. Membrane disruption by Alzheimer β-amyloid peptides mediated through specific binding to either phospholipids or gangliosides. J Biol Chem. 1996;271:26482–26489.

    CAS  Article  Google Scholar 

  71. Raghupathi KR, Guo J, Munkhbat O, Rangadurai P, Thayumanavan S. Supramolecular disassembly of facially amphiphilic dendrimer assemblies in response to physical, chemical, and biological stimuli. Acc Chem Res. 2014;47:2200–2211.

    CAS  Article  Google Scholar 

  72. Zhang S, Moussodia R-O, Murzeau C, Sun H-J, Klein ML, Vértesy S, et al. Dissecting molecular aspects of cell interactions using glycodendrimersomes with programmable glycan presentation and engineered human lectins. Angew Chem Int Ed. 2015;54:4036–4040.

    CAS  Article  Google Scholar 

  73. Percec V, Leowanawat P, Sun H-J, Kulikov O, Nusbaum CD, Tran TM, et al. Modular synthesis of amphiphilic janus glycodendrimers and their self-assembly into glycodendrimersomes and other complex architectures with bioactivity to biomedically relevant lectins. J Am Chem Soc. 2013;135:9055–9077.

    CAS  Article  Google Scholar 

  74. Kopitz J, Xiao Q, Ludwig A-K, Romero A, Michalak M, Sherman SE, et al. Reaction of a programmable glycan presentation of glycodendrimersomes and cells with engineered human lectins to show the sugar functionality of the cell surface. Angew Chem Int Ed. 2017;56:14677–14681.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

I would like to express my best gratitude to Prof. Dr. Yoshiko Miura (Kyushu University) for her continuous encouragement and frequent discussions. I also thank all my coworkers at the Japan Advanced Institute of Science and Technology (JAIST) and Kyushu University for their cooperation with the study in this review. In particular, I am grateful to Dr. Erino Matsumoto and Mr. Shunsuke Onogi for their significant contributions. This work was partially supported by the JSPS KAKENHI Grant-in-Aid for Young Scientists (B) number 17K14495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Fukuda.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fukuda, T. Biological recognition at interfaces involving dendritic molecules. Polym J 51, 535–546 (2019). https://doi.org/10.1038/s41428-018-0168-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-018-0168-x

Search

Quick links