Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cellular and Molecular Biology

Neoadjuvant therapy alters the collagen architecture of pancreatic cancer tissue via Ephrin-A5



The treatment of pancreatic cancer (PDAC) remains clinically challenging, and neoadjuvant therapy (NAT) offers down staging and improved surgical resectability. Abundant fibrous stroma is involved in malignant characteristic of PDAC. We aimed to investigate tissue remodelling, particularly the alteration of the collagen architecture of the PDAC microenvironment by NAT.


We analysed the alteration of collagen and gene expression profiles in PDAC tissues after NAT. Additionally, we examined the biological role of Ephrin-A5 using primary cultured cancer-associated fibroblasts (CAFs).


The expression of type I, III, IV, and V collagen was reduced in PDAC tissues after effective NAT. The bioinformatics approach provided comprehensive insights into NAT-induced matrix remodelling, which showed Ephrin-A signalling as a likely pathway and Ephrin-A5 (encoded by EFNA5) as a crucial ligand. Effective NAT reduced the number of Ephrin-A5+ cells, which were mainly CAFs; this inversely correlated with the clinical tumour shrinkage rate. Experimental exposure to radiation and chemotherapeutic agents suppressed proliferation, EFNA5 expression, and collagen synthesis in CAFs. Forced EFNA5 expression altered CAF collagen gene profiles similar to those found in PDAC tissues after NAT.


These results suggest that effective NAT changes the extracellular matrix with collagen profiles through CAFs and their Ephrin-A5 expression.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Comparison of the collagen-expressed area in the four pancreatic conditions.
Fig. 2: Alteration of collagen gene expression following neoadjuvant therapy (NAT).
Fig. 3: Visualisation of expressional profile and signalling after neoadjuvant therapy (NAT).
Fig. 4: Neoadjuvant therapy (NAT) suppressed EFNA5 positive cells in PDAC tissues.
Fig. 5: Experimental exposure of cancer-associated fibroblasts (CAFs) to chemotherapeutic reagents or radiation.

Data availability

The datasets used and analysed during the current study are available from the corresponding author upon reasonable request.


  1. 1.

    Hidalgo M. Pancreatic cancer. N. Engl J Med. 2010;362:1605–17.

    CAS  PubMed  Google Scholar 

  2. 2.

    Hruban RH, Adsay NV, Esposito I, Fukushima N, Furukawa T, Kloeppel G, et al. Pancreatic ductal adenocarcinoma. In: Board WCoTE (ed.) World Health Organization Classification of Tumours. 5th Edition. Digestive System Tumours, 5th edn. IARCPress: Lyon, 2019, pp. 322–32.

  3. 3.

    Ducreux M, Cuhna AS, Caramella C, Hollebecque A, Burtin P, Goere D, et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26:v56–68.

    PubMed  Google Scholar 

  4. 4.

    Tempero MA. NCCN Guidelines updates: pancreatic cancer. J Natl Compr Canc Netw. 2019;17:603–5.

    CAS  PubMed  Google Scholar 

  5. 5.

    Tempero MA, Malafa MP, Al-Hawary M, Asbun H, Bain A, Behrman SW, et al. Pancreatic adenocarcinoma, Version 2.2017, NCCN clinical practice guidelines in oncology. J Natl Compr Canc Netw. 2017;15:1028–61.

    PubMed  Google Scholar 

  6. 6.

    Assifi MM, Lu X, Eibl G, Reber HA, Li G, Hines OJ. Neoadjuvant therapy in pancreatic adenocarcinoma: a meta-analysis of phase II trials. Surgery. 2011;150:466–73.

    PubMed  Google Scholar 

  7. 7.

    Gillen S, Schuster T, Meyer Zum Buschenfelde C, Friess H, Kleeff J. Preoperative/neoadjuvant therapy in pancreatic cancer: a systematic review and meta-analysis of response and resection percentages. PLoS Med. 2010;7:e1000267.

    PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tienhoven GV, Versteijne E, Suker M, Groothuis KBC, Busch OR, Bonsing BA, et al. Preoperative chemoradiotherapy versus immediate surgery for resectable and borderline resectable pancreatic cancer (PREOPANC-1): a randomized, controlled, multicenter phase III trial. J Clin Oncol. 2018;36:LBA4002.

    Google Scholar 

  9. 9.

    Homma Y, Taniguchi K, Murakami T, Nakagawa K, Nakazawa M, Matsuyama R, et al. Immunological impact of neoadjuvant chemoradiotherapy in patients with borderline resectable pancreatic ductal adenocarcinoma. Ann Surg Oncol. 2014;21:670–6.

    PubMed  Google Scholar 

  10. 10.

    Murakami T, Homma Y, Matsuyama R, Mori R, Miyake K, Tanaka Y, et al. Neoadjuvant chemoradiotherapy of pancreatic cancer induces a favorable immunogenic tumor microenvironment associated with increased major histocompatibility complex class I-related chain A/B expression. J Surg Oncol. 2017;116:416–26.

    CAS  PubMed  Google Scholar 

  11. 11.

    Nejati R, Goldstein JB, Halperin DM, Wang H, Hejazi N, Rashid A, et al. Prognostic significance of tumor-infiltrating lymphocytes in patients with pancreatic ductal adenocarcinoma treated with neoadjuvant chemotherapy. Pancreas. 2017;46:1180–7.

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Takeuchi S, Baghdadi M, Tsuchikawa T, Wada H, Nakamura T, Abe H, et al. Chemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancer. Cancer Res. 2015;75:2629–40.

    CAS  PubMed  Google Scholar 

  13. 13.

    Tsuchikawa T, Hirano S, Tanaka E, Matsumoto J, Kato K, Nakamura T, et al. Novel aspects of preoperative chemoradiation therapy improving anti-tumor immunity in pancreatic cancer. Cancer Sci. 2013;104:531–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Miyashita T, Tajima H, Makino I, Okazaki M, Yamaguchi T, Ohbatake Y, et al. Neoadjuvant chemotherapy with gemcitabine plus nab-paclitaxel reduces the number of cancer-associated fibroblasts through depletion of pancreatic stroma. Anticancer Res. 2018;38:337–43.

    CAS  PubMed  Google Scholar 

  15. 15.

    Kalluri R. The biology and function of fibroblasts in cancer. Nat Rev Cancer. 2016;16:582–98.

    CAS  PubMed  Google Scholar 

  16. 16.

    Ino Y, Yamazaki-Itoh R, Oguro S, Shimada K, Kosuge T, Zavada J, et al. Arginase II expressed in cancer-associated fibroblasts indicates tissue hypoxia and predicts poor outcome in patients with pancreatic cancer. PLoS ONE. 2013;8:e55146.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Armstrong T, Packham G, Murphy LB, Bateman AC, Conti JA, Fine DR, et al. Type I collagen promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Clin Cancer Res. 2004;10:7427–37.

    CAS  PubMed  Google Scholar 

  18. 18.

    Berchtold S, Grunwald B, Kruger A, Reithmeier A, Hahl T, Cheng T, et al. Collagen type V promotes the malignant phenotype of pancreatic ductal adenocarcinoma. Cancer Lett. 2015;356:721–32.

    CAS  PubMed  Google Scholar 

  19. 19.

    Ohlund D, Franklin O, Lundberg E, Lundin C, Sund M. Type IV collagen stimulates pancreatic cancer cell proliferation, migration, and inhibits apoptosis through an autocrine loop. BMC Cancer. 2013;13:154.

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Olivares O, Mayers JR, Gouirand V, Torrence ME, Gicquel T, Borge L, et al. Collagen-derived proline promotes pancreatic ductal adenocarcinoma cell survival under nutrient limited conditions. Nat Commun. 2017;8:16031.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Shields MA, Dangi-Garimella S, Krantz SB, Bentrem DJ, Munshi HG. Pancreatic cancer cells respond to type I collagen by inducing snail expression to promote membrane type 1 matrix metalloproteinase-dependent collagen invasion. J Biol Chem. 2011;286:10495–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Campbell TN, Attwell S, Arcellana-Panlilio M, Robbins SM. Ephrin A5 expression promotes invasion and transformation of murine fibroblasts. Biochem Biophys Res Commun. 2006;350:623–8.

    CAS  PubMed  Google Scholar 

  23. 23.

    Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R, et al. New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer. 2009;45:228–47.

    CAS  Google Scholar 

  24. 24.

    Brierley JD, Gospodarowicz MK, Wittekind C. TNM classification of malignant tumours, 8th ed. Wiley-Blackwell: Hoboken, NJ, 2017.

  25. 25.

    Japan-Pancreas-Society. Classification of Pancreatic Cancer, 3rd English ed. Kanehara: Tokyo, Japan, 2011.

  26. 26.

    Hiraoka N, Ino Y, Hori S, Yamazaki-Itoh R, Naito C, Shimasaki M, et al. Expression of classical human leukocyte antigen class I antigens, HLA-E and HLA-G, is adversely prognostic in pancreatic cancer patients. Cancer Sci. 2020;111:3057–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Oguro S, Ino Y, Shimada K, Hatanaka Y, Matsuno Y, Esaki M, et al. Clinical significance of tumor-infiltrating immune cells focusing on BTLA and Cbl-b in patients with gallbladder cancer. Cancer Sci. 2015;106:1750–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Ramilowski JA, Goldberg T, Harshbarger J, Kloppmann E, Lizio M, Satagopam VP, et al. A draft network of ligand-receptor-mediated multicellular signaling in human. Nat Commun. 2015;6:7866.

    CAS  PubMed  Google Scholar 

  29. 29.

    Ino Y, Oguro S, Yamazaki-Itoh R, Hori S, Shimada K, Hiraoka N. Reliable evaluation of tumor-infiltrating lymphocytes in pancreatic cancer tissue biopsies. Oncotarget. 2019;10:1149–59.

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Doi N, Ino Y, Angata K, Shimada K, Narimatsu H, Hiraoka N. Clinicopathological significance of core 3 O-glycan synthetic enzyme, beta1,3-N-acetylglucosaminyltransferase 6 in pancreatic ductal adenocarcinoma. PLoS ONE. 2020;15:e0242851.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Imamura T, Iguchi H, Manabe T, Ohshio G, Yoshimura T, Wang ZH, et al. Quantitative analysis of collagen and collagen subtypes I, III, and V in human pancreatic cancer, tumor-associated chronic pancreatitis, and alcoholic chronic pancreatitis. Pancreas. 1995;11:357–64.

    CAS  PubMed  Google Scholar 

  32. 32.

    Julich D, Mould AP, Koper E, Holley SA. Control of extracellular matrix assembly along tissue boundaries via Integrin and Eph/Ephrin signaling. Development. 2009;136:2913–21.

    CAS  PubMed  Google Scholar 

  33. 33.

    Lagares D, Ghassemi-Kakroodi P, Tremblay C, Santos A, Probst CK, Franklin A, et al. ADAM10-mediated ephrin-B2 shedding promotes myofibroblast activation and organ fibrosis. Nat Med. 2017;23:1405–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Walsh R, Blumenberg M. Specific and shared targets of ephrin A signaling in epidermal keratinocytes. J Biol Chem. 2011;286:9419–28.

    CAS  PubMed  Google Scholar 

  35. 35.

    Chang Q, Jorgensen C, Pawson T, Hedley DW. Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br J Cancer. 2008;99:1074–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Duxbury MS, Ito H, Zinner MJ, Ashley SW, Whang EE. EphA2: a determinant of malignant cellular behavior and a potential therapeutic target in pancreatic adenocarcinoma. Oncogene. 2004;23:1448–56.

    CAS  PubMed  Google Scholar 

  37. 37.

    Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer. 2010;10:165–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Himanen JP, Chumley MJ, Lackmann M, Li C, Barton WA, Jeffrey PD, et al. Repelling class discrimination: ephrin-A5 binds to and activates EphB2 receptor signaling. Nat Neurosci. 2004;7:501–9.

    CAS  PubMed  Google Scholar 

  39. 39.

    Pasquale EB. The Eph family of receptors. Curr Opin Cell Biol. 1997;9:608–15.

    CAS  PubMed  Google Scholar 

  40. 40.

    Giaginis C, Tsourouflis G, Zizi-Serbetzoglou A, Kouraklis G, Chatzopoulou E, Dimakopoulou K, et al. Clinical significance of ephrin (eph)-A1, -A2, -a4, -a5 and -a7 receptors in pancreatic ductal adenocarcinoma. Pathol Oncol Res. 2010;16:267–76.

    CAS  PubMed  Google Scholar 

  41. 41.

    Mudali SV, Fu B, Lakkur SS, Luo M, Embuscado EE, Iacobuzio-Donahue CA. Patterns of EphA2 protein expression in primary and metastatic pancreatic carcinoma and correlation with genetic status. Clin Exp Metastasis. 2006;23:357–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Markosyan N, Li J, Sun YH, Richman LP, Lin JH, Yan F, et al. Tumor cell-intrinsic EPHA2 suppresses anti-tumor immunity by regulating PTGS2 (COX-2). J Clin Invest. 2019;129:3594–609.

    PubMed  PubMed Central  Google Scholar 

  43. 43.

    Lee CS, Montebello J, Georgiou T, Rode J. Distribution of type IV collagen in pancreatic adenocarcinoma and chronic pancreatitis. Int J Exp Pathol. 1994;75:79–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Desgrosellier JS, Cheresh DA. Integrins in cancer: biological implications and therapeutic opportunities. Nat Rev Cancer. 2010;10:9–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Grzesiak JJ, Bouvet M. The alpha2beta1 integrin mediates the malignant phenotype on type I collagen in pancreatic cancer cell lines. Br J Cancer. 2006;94:1311–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Dauer P, Zhao X, Gupta VK, Sharma N, Kesh K, Gnamlin P, et al. Inactivation of cancer-associated-fibroblasts disrupts oncogenic signaling in pancreatic cancer cells and promotes its regression. Cancer Res. 2018;78:1321–33.

    CAS  PubMed  Google Scholar 

Download references


We thank Ms. Sachiko Miura and Toshiko Sakaguchi for excellent techniques. We also thank Fumiyo Saito (Chemical Evaluation Research Institute, Tokyo, Japan) for bioinformatic analysis. The authors are grateful to the Mr. Naoki Kimoto, Mr. Koichiro Horiguchi, and Ms. Miyuki Kubokawa (Amelieff, Tokyo, Japan) to modify the software program, and Naoko Tominaga (Dnaform, Kanagawa, Japan) to extract CAGE data in this study. We are grateful to the National Cancer Center Biobank for the tissue samples used in this study.


This work was supported by JSPS KAKENHI [21K07139(NH), 18K16377(KN)], and AMED [21ck0106540(NH)].

Author information




Study concept and design; KN and NK, acquisition of data, analysis and interpretation of data; KN, YI, CN, SN, MS, UI, TI, ND and NH, drafting of the manuscript; KN, critical revision of the manuscript for important intellectual content; NH, obtained funding; KN and NH, technical or material support; ME, YK, KS and NH, study supervision; NH.

Corresponding author

Correspondence to Nobuyoshi Hiraoka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Ethics approval and consent to participate

This study was approved by the Institutional Review Board of the National Cancer Center, Japan (#2005-077 and #2016-006). Informed consent was obtained from all participants involved in the study, and all clinical investigations were conducted in line with the principles of the Declaration of Helsinki.

Consent to publish

There are no individual person’s data from all participants involved in the study.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakajima, K., Ino, Y., Naito, C. et al. Neoadjuvant therapy alters the collagen architecture of pancreatic cancer tissue via Ephrin-A5. Br J Cancer (2021).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


Quick links