Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Oncogenic potential of BEST4 in colorectal cancer via activation of PI3K/Akt signaling

Abstract

BEST4 is a member of the bestrophin protein family that plays a critical role in human intestinal epithelial cells. However, its role and mechanism in colorectal cancer (CRC) remain largely elusive. Here, we investigated the role and clinical significance of BEST4 in CRC. Our results demonstrate that BEST4 expression is upregulated in clinical CRC samples and its high-level expression correlates with advanced TNM (tumor, lymph nodes, distant metastasis) stage, LNM (lymph node metastasis), and poor survival. Functional studies revealed that ectopic expression of BEST4 promoted CRC cell proliferation and metastasis, whereas the depletion of BEST4 had the opposite effect both in vitro and in vivo. Mechanistically, BEST4 binds to the p85α regulatory subunit of phosphatidylinositol-3-kinase (PI3K) and promotes p110 kinase activity; this leads to activation of Akt signaling and expression of MYC and CCND1, which are critical regulators of cell proliferation and metastasis. In clinical samples, the expression of BEST4 is positively associated with the expression of phosphorylated Akt, MYC and CCND1. Pharmacological inhibition of Akt activity markedly repressed BEST4-mediated Akt signaling and proliferation and metastasis of CRC cells. Importantly, the interaction between BEST4 and p85α was also enhanced by epidermal growth factor (EGF) in CRC cells. Therapeutically, BEST4 suppression effectively sensitized CRC cells to gefitinib treatment in vivo. Taken together, our findings indicate the oncogenic potential of BEST4 in colorectal carcinogenesis and metastasis by modulating BEST4/PI3K/Akt signaling, highlighting a potential strategy for CRC therapy.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: High expression of BEST4 in CRC predicts a poor clinical outcome.
Fig. 2: BEST4 promotes proliferation and migration of CRC cells in vitro.
Fig. 3: BEST4 enhances CRC growth and metastasis in vivo.
Fig. 4: BEST4 regulates Akt signaling.
Fig. 5: BEST4 interacts with p85α to activate Akt signaling.
Fig. 6: BEST4 is involved in EGF-induced PI3K/Akt signaling and promotes resistance of CRC cells to gefitinib treatment.
Fig. 7: Expression levels of BEST4, MYC, and CCND1 in clinical CRC tissues.

References

  1. Engelman JA, Luo J, Cantley LC. The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Genet. 2006;7:606–19.

    CAS  PubMed  Google Scholar 

  2. Martini M, De Santis MC, Braccini L, Gulluni F, Hirsch E. PI3K/AKT signaling pathway and cancer: an updated review. Ann Med. 2014;46:372–83.

    CAS  PubMed  Google Scholar 

  3. Noorolyai S, Shajari N, Baghbani E, Sadreddini S, Baradaran B. The relation between PI3K/AKT signalling pathway and cancer. Gene. 2019;698:120–8.

    CAS  PubMed  Google Scholar 

  4. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. Integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Samuels Y, Wang ZH, Bardelli A, Silliman N, Ptak J, Szabo S, et al. High frequency of mutations of the PIK3CA gene in human cancers. Science. 2004;304:554–554.

    CAS  PubMed  Google Scholar 

  6. Levine DA, Bogomolniy F, Yee CJ, Lash A, Barakat RR, Borgen PI, et al. Frequent mutation of the PIK3CA gene in ovarian and breast cancers. Clin Cancer Res. 2005;11:2875–8.

    CAS  PubMed  Google Scholar 

  7. Lee JW, Soung YH, Kim SY, Lee HW, Park WS, Nam SW, et al. PIK3CA gene is frequently mutated in breast carcinomas and hepatocellular carcinomas. Oncogene. 2005;24:1477–80.

    CAS  PubMed  Google Scholar 

  8. Triscott J, Rubin MA. Prostate power play: does Pik3ca accelerate Pten-deficient cancer progression? Cancer Discov. 2018;8:682–5.

    CAS  PubMed  Google Scholar 

  9. Cheung LWT, Hennessy BT, Li J, Yu SX, Myers AP, Djordjevic B, et al. High frequency of PIK3R1 and PIK3R2 mutations in endometrial cancer elucidates a novel mechanism for regulation of PTEN protein stability. Cancer Discov. 2011;1:170–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Stemke-Hale K, Gonzalez-Angulo AM, Lluch A, Neve RM, Kuo WL, Davies M, et al. An integrative genomic and proteomic analysis of PIK3CA, PTEN, and AKT mutations in breast cancer. Cancer Res. 2008;68:6084–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov. 2005;4:988–1004.

    CAS  PubMed  Google Scholar 

  13. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C, Sasaki T, et al. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell. 1998;95:29–39.

    CAS  PubMed  Google Scholar 

  14. Papa A, Wan LX, Bonora M, Salmena L, Song MS, Hobbs RM, et al. Cancer-associated PTEN mutants act in a dominant-negative manner to suppress PTEN protein function. Cell. 2014;157:595–610.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou H, Liu W, Su Y, Wei Z, Liu J, Kolluri SK, et al. NSAID sulindac and its analog bind RXRalpha and inhibit RXRalpha-dependent AKT signaling. Cancer Cell. 2010;17:560–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Yan TD, Wu H, Zhang HP, Lu N, Ye P, Yu FH, et al. Oncogenic potential of retinoic acid receptor-gamma in hepatocellular carcinoma. Cancer Res. 2010;70:2285–95.

    CAS  PubMed  Google Scholar 

  17. He XS, Guo LC, Du MZ, Huang S, Huang RP, Zhan SH, et al. The long non-coding RNA NONHSAT062994 inhibits colorectal cancer by inactivating Akt signaling. Oncotarget. 2017;8:68696–706.

    PubMed  PubMed Central  Google Scholar 

  18. Tsunenari T, Sun H, Williams J, Cahill H, Smallwood P, Yau KW, et al. Structure-function analysis of the bestrophin family of anion channels. J Biol Chem. 2003;278:41114–25.

    CAS  PubMed  Google Scholar 

  19. Petrukhin K, Koisti MJ, Bakall B, Li W, Xie GC, Marknell T, et al. Identification of the gene responsible for Best macular dystrophy. Nat Genet. 1998;19:241–7.

    CAS  PubMed  Google Scholar 

  20. Tsunenari T, Nathans J, Yau KW. Ca2+-activated Cl- current from human bestrophin-4 in excised membrane patches. J Gen Physiol. 2006;127:749–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun H, Tsunenari T, Yau KW, Nathans J. The vitelliform macular dystrophy protein defines a new family of chloride channels. Proc Natl Acad Sci USA. 2002;99:4008–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stohr H, Marquardt A, Nanda I, Schmid M, Weber BHF. Three novel human VMD2-like genes are members of the evolutionary highly conserved RFP-TM family. Eur J Hum Genet. 2002;10:281–4.

    PubMed  Google Scholar 

  23. Ji C, Li Y, Kittredge A, Hopiavuori A, Ward N, Yao P, et al. Investigation and restoration of BEST1 activity in patient-derived RPEs with dominant mutations. Sci Rep. 2019;9:19026.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu K, Lujan R, Marmorstein A, Gabriel S, Hartzell HC. Bestrophin-2 mediates bicarbonate transport by goblet cells in mouse colon. J Clin Investig. 2010;120:1722–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kramer F, Stohr H, Weber BHF. Cloning and characterization of the murine Vmd2 RFP-TM gene family. Cytogenet Genome Res. 2004;105:107–14.

    CAS  PubMed  Google Scholar 

  26. Wu L, Sun Y, Ma L, Zhu J, Zhang B, Pan Q, et al. A C-terminally truncated mouse Best3 splice variant targets and alters the ion balance in lysosome-endosome hybrids and the endoplasmic reticulum. Sci Rep. 2016;6:27332.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ito G, Okamoto R, Murano T, Shimizu H, Fujii S, Nakata T, et al. Lineage-specific expression of bestrophin-2 and bestrophin-4 in human intestinal epithelial cells. PLoS ONE. 2013;8:e79693.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM. Regulation of the p85/p110 phosphatidylinositol 3’-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol. 1998;18:1379–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Thorpe LM, Spangle JM, Ohlson CE, Cheng HL, Roberts TM, Cantley LC, et al. PI3K-p110 alpha mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85 alpha. Proc Natl Acad Sci USA. 2017;114:7095–7100.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu Y, Liu Z, Wang K. The Ca(2+)-activated chloride channel ANO1/TMEM16A: an emerging therapeutic target for epithelium-originated diseases? Acta Pharm Sin B. 2021;11:1412–33.

    PubMed  Google Scholar 

  31. Scaltriti M, Baselga J. The epidermal growth factor receptor pathway: a model for targeted therapy. Clin Cancer Res. 2006;12:5268–72.

    CAS  PubMed  Google Scholar 

  32. Jacobsen K, Bertran-Alamillo J, Molina MA, Teixido C, Karachaliou N, Pedersen MH, et al. Convergent Akt activation drives acquired EGFR inhibitor resistance in lung cancer. Nat Commun. 2017;8:410.

    PubMed  PubMed Central  Google Scholar 

  33. Yang J, Nie J, Ma XL, Wei YQ, Peng Y, Wei XW. Targeting PI3K in cancer: mechanisms and advances in clinical trials. Mol Cancer. 2019;18:1–28.

    PubMed  PubMed Central  Google Scholar 

  34. Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Dieterle AM, Bohler P, Keppeler H, Alers S, Berleth N, Driessen S, et al. PDK1 controls upstream PI3K expression and PIP3 generation. Oncogene. 2014;33:3043–53.

    CAS  PubMed  Google Scholar 

  36. Kaneko T, Li L, Li SSC. The SH3 domain - a family of versatile peptide- and protein-recognition module. Front Biosci. 2008;13:4938–52.

    CAS  PubMed  Google Scholar 

  37. Yang JL, Qu XJ, Russell PJ, Goldstein D. Regulation of epidermal growth factor receptor in human colon cancer cell lines by interferon alpha. Gut. 2004;53:123–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rajagopal S, Huang S, Moskal TL, Lee BN, el-Naggar AK, Chakrabarty S. Epidermal growth factor expression in human colon and colon carcinomas: anti-sense epidermal growth factor receptor RNA down-regulates the proliferation of human colon cancer cells. Int J Cancer. 1995;62:661–7.

    CAS  PubMed  Google Scholar 

  39. Guo PD, Lu XX, Gan WJ, Li XM, He XS, Zhang S, et al. RAR gamma downregulation contributes to colorectal tumorigenesis and metastasis by derepressing the Hippo-Yap pathway. Cancer Res. 2016;76:3813–25.

    CAS  PubMed  Google Scholar 

  40. Xing C, Lu XX, Guo PD, Shen T, Zhang S, He XS, et al. Ubiquitin-specific protease 4-mediated deubiquitination and stabilization of PRL-3 is required for potentiating colorectal oncogenesis. Cancer Res. 2016;76:83–95.

    CAS  PubMed  Google Scholar 

  41. Wu H, Li XM, Wang JR, Gan WJ, Jiang FQ, Liu Y, et al. NUR77 exerts a protective effect against inflammatory bowel disease by negatively regulating the TRAF6/TLR-IL-1R signalling axis. J Pathol. 2016;238:457–69.

    CAS  PubMed  Google Scholar 

  42. Wang JR, Gan WJ, Li XM, Zhao YY, Li Y, Lu XX, et al. Orphan nuclear receptor Nur77 promotes colorectal cancer invasion and metastasis by regulating MMP-9 and E-cadherin. Carcinogenesis. 2014;35:2474–84.

    CAS  PubMed  Google Scholar 

  43. Colaprico A, Silva TC, Olsen C, Garofano L, Cava C, Garolini D, et al. TCGAbiolinks: an R/Bioconductor package for integrative analysis of TCGA data. Nucleic Acids Res. 2015;44:e71–e71.

    PubMed  PubMed Central  Google Scholar 

  44. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–40.

    PubMed  PubMed Central  Google Scholar 

  45. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci. 2005;102:15545–50.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20190042, BK20181434, and BK20190182), National Natural Science Foundation of China (82022050, 81972601, and 81772541), and the Science and Technology Foundation of Suzhou (SYS2019034, SKJY2021070). This work was also supported by the Fujian Provincial Key Laboratory of Innovative Drug Target Research, the Tang Scholar Funds, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Affiliations

Authors

Contributions

XH and HW contributed to the study conception and design. XH, WY, YY, RZ, and YZ performed the experiments. XY performed the bioinformatics analysis. FL, JW, XD, HB, and WG collected and evaluated the clinical samples. YZ and LG provided technical support. XH, XY, and HW wrote the manuscript. HW supervised the study.

Corresponding authors

Correspondence to Ling-Chuan Guo, Wen-Juan Gan or Hua Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, XS., Ye, WL., Zhang, YJ. et al. Oncogenic potential of BEST4 in colorectal cancer via activation of PI3K/Akt signaling. Oncogene 41, 1166–1177 (2022). https://doi.org/10.1038/s41388-021-02160-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41388-021-02160-2

Search

Quick links