Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Methamphetamine: burden, mechanism and impact on pregnancy, the fetus, and newborn

Abstract

While the opioid epidemic has garnered worldwide attention, increasing methamphetamine use has drawn less scrutiny. Methamphetamine is a highly addictive psychostimulant affecting people from all backgrounds and regions. It is a potent vasoconstrictor, is associated with arrhythmias and dilated cardiomyopathy. Cardiovascular disease-related mortality is a leading cause of death in methamphetamine users. Women of childbearing age increasingly use methamphetamine and continue during pregnancy. In the short term, prenatal methamphetamine use is associated with fetal growth restriction and low birth weight in the newborn. Animal studies show reduction in uterine and umbilical blood flow following maternal methamphetamine administration. Based on currently available evidence, prenatal methamphetamine exposure has transient effects on gross motor development, no effect on language and cognition, and modest effects on behavior and executive functioning with poor inhibitory control, which may be attributable to early adversity. Further research is needed to evaluate long-term effects of prenatal methamphetamine exposure.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Mechanisms of action of methamphetamine.
Fig. 2: Graphical abstract on effects of prenatal methamphetamine use on maternal, fetal, neonatal and neurodevelopmental outcomes.

References

  1. Dixon SD, Bejar R. Echoencephalographic findings in neonates associated with maternal cocaine and methamphetamine use: Incidence and clinical correlates. J Pediatrics. 1989;115:770–778. https://doi.org/10.1016/S0022-3476(89)80661-4

    CAS  Article  Google Scholar 

  2. Dixon SD. Effects of transplacental exposure to cocaine and methamphetamine on the neonate. West J Med. 1989;150:436.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. NIDA. What are the risks of methamphetamine misuse during pregnancy?. National Institute on Drug Abuse website. https://www.drugabuse.gov/publications/research-reports/methamphetamine/what-are-risks-methamphetamine-misuse-during-pregnancy. April 13, 2021 Accessed September 30, 2021.

  4. Kevil CG, Goeders NE, Woolard MD, Bhuiyan MS, Dominic P, Kolluru GK, et al. Methamphetamine Use and Cardiovascular Disease. Arteriosclerosis, thrombosis, Vasc Biol. 2019;39:1739–46. https://doi.org/10.1161/atvbaha.119.312461

    CAS  Article  Google Scholar 

  5. Stoneberg DM, Shukla RK, Magness MB. Global methamphetamine trends: an evolving problem. Int Crim justice Rev. 2018;28:136–61.

    Article  Google Scholar 

  6. McKetin R, Leung J, Stockings E, Huo Y, Foulds J, Lappin JM, et al. Mental health outcomes associated with of the use of amphetamines: A systematic review and meta-analysis. EClinicalMedicine. 2019;16:81–97. https://doi.org/10.1016/j.eclinm.2019.09.014

    PubMed  PubMed Central  Article  Google Scholar 

  7. Richards JR, Hamidi S, Grant CD, Wang CG, Tabish N, Turnipseed SD, et al. Methamphetamine use and emergency department utilization: 20 years later. J Addict. 2017;2017:4050932–4050932. https://doi.org/10.1155/2017/4050932

    PubMed  PubMed Central  Article  Google Scholar 

  8. UNODC. World Drug Report 2020. United Nations Office on Drugs and Crime;https://wdr.unodc.org/wdr2020/field/WDR20_Booklet_2.pdf, 18- 25 (2020).

  9. Hendricks EJ. Off-label drugs for weight management. Diabetes Metab Syndr Obes. 2017;10:223–34. https://doi.org/10.2147/DMSO.S95299

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  10. Elinore F. McCance-Katz, M, PhD. Substance Abuse and Mental Health Services Administration. The National Survery on Drug Use and Health: 2018. https://www.samhsa.gov/data/sites/default/files/cbhsq-reports/Assistant-Secretary-nsduh2018_presentation.pdf, 36-37 (2018).

  11. Administration., SAAMHS Key substance use and mental health indicators in the United States: Results from the 2019 National Survey on Drug Use and Health (HHS Publication No. PEP20-07-01-001, NSDUH Series H-55). Rockville, MD: Center for Behavioral Health Statistics and Quality, Substance Abuse and Mental Health Services Administration. Retrieved from https://www.samhsa.gov/data/. (2020).

  12. Artigiani EE, Hsu MH, McCandlish D, and Wish ED Methamphetamine: a Regional Drug Crisis. National Drug Early Warning System 2018 https://cesar.umd.edu/sites/cesar.umd.edu/files/pubs/ndews-scs-methamphetamine-report-september-2018-final.pdf, 2–6 (2018).

  13. Han B, Compton WM, Jones CM, Einstein EB & Volkow, ND Methamphetamine Use, Methamphetamine Use Disorder, and Associated Overdose Deaths Among US Adults. JAMA Psychiatry. https://doi.org/10.1001/jamapsychiatry.2021.2588 (2021).

  14. Customs US, P. B. CBP enforcement statistics FY 2021. US Department of Homeland Security, Washington, DC. https://www.cbp.gov/newsroom/stats/drug-seizure-statistics (2021).

  15. Sulzer D, Sonders MS, Poulsen NW, Galli A. Mechanisms of neurotransmitter release by amphetamines: a review. Prog Neurobiol. 2005;75:406–33. https://doi.org/10.1016/j.pneurobio.2005.04.003

    CAS  PubMed  Article  Google Scholar 

  16. Winkelman TNA, Admon LK, Jennings L, Shippee ND, Richardson CR, Bart G. Evaluation of Amphetamine-Related Hospitalizations and Associated Clinical Outcomes and Costs in the United States. JAMA Netw Open. 2018;1:e183758–e183758. https://doi.org/10.1001/jamanetworkopen.2018.3758

    PubMed  PubMed Central  Article  Google Scholar 

  17. Derauf C, LaGasse LL, Smith LM, Grant P, Shah R, Arria A, et al. Demographic and psychosocial characteristics of mothers using methamphetamine during pregnancy: preliminary results of the infant development, environment, and lifestyle study (IDEAL). Am J Drug Alcohol Abus. 2007;33:281–289. https://doi.org/10.1080/00952990601175029

    Article  Google Scholar 

  18. Wright TE, Schuetter R, Tellei J, Sauvage L. Methamphetamines and pregnancy outcomes. J addiction Med. 2015;9:111–117. https://doi.org/10.1097/ADM.0000000000000101

    CAS  Article  Google Scholar 

  19. Mattson CL, Tanz LJ, Quinn K, Kariisa M, Patel P, Davis NL. Trends and geographic patterns in drug and synthetic opioid overdose deaths - United States, 2013-2019. MMWR Morb Mortal Wkly Rep. 2021;70:202–207. https://doi.org/10.15585/mmwr.mm7006a4

    PubMed  PubMed Central  Article  Google Scholar 

  20. Chiang M, Lombardi D, Du J, Makrum U, Sitthichai R, Harrington A, et al. Methamphetamine-associated psychosis: clinical presentation, biological basis, and treatment options. Hum Psychopharmacol. 2019;34:e2710 https://doi.org/10.1002/hup.2710

    PubMed  Article  Google Scholar 

  21. Kidd SE, Grey JA, Torrone EA, Weinstock HS. Increased methamphetamine, injection drug, and heroin use among women and heterosexual men with primary and secondary syphilis - United States, 2013–2017. MMWR Morb Mortal Wkly Rep. 2019;68:144–148. https://doi.org/10.15585/mmwr.mm6806a4

    PubMed  PubMed Central  Article  Google Scholar 

  22. Ashok AH, Mizuno Y, Volkow ND, Howes OD. Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta-analysis. JAMA Psychiatry. 2017;74:511–519. https://doi.org/10.1001/jamapsychiatry.2017.0135

    PubMed  PubMed Central  Article  Google Scholar 

  23. Trivedi MH, Walker R, Ling W, dela Cruz A, Sharma G, Carmody T, et al. Bupropion and naltrexone in methamphetamine use disorder. N. Engl J Med. 2021;384:140–153. https://doi.org/10.1056/NEJMoa2020214

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. Perez FA, Blythe S, Wouldes T, McNamara K, Black KI, Oei JL. Prenatal methamphetamine-impact on the mother and child-a review. Addiction. 2021. https://doi.org/10.1111/add.15509

    PubMed  Article  Google Scholar 

  25. Brown JM, Hanson GR, Fleckenstein AE. Regulation of the vesicular monoamine transporter-2: a novel mechanism for cocaine and other psychostimulants. J Pharmacol Exp therapeutics. 2001;296:762–767.

    CAS  Google Scholar 

  26. Khoshbouei H, Wang H, Lechleiter JD, Javitch JA, Galli A. Amphetamine-induced dopamine efflux. A voltage-sensitive and intracellular Na+-dependent mechanism. J Biol Chem. 2003;278:12070–12077. https://doi.org/10.1074/jbc.M212815200

    CAS  PubMed  Article  Google Scholar 

  27. Schmitz Y, Lee CJ, Schmauss C, Gonon F, Sulzer D. Amphetamine distorts stimulation-dependent dopamine overflow: effects on D2 autoreceptors, transporters, and synaptic vesicle stores. J Neurosci: Off J Soc Neurosci. 2001;21:5916–5924.

    CAS  Article  Google Scholar 

  28. Saunders C, Ferrer JV, Shi L, Chen J, Merrill G, Lamb ME, et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc Natl Acad Sci USA. 2000;97:6850–6855. https://doi.org/10.1073/pnas.110035297

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  29. Mantle TJ, Tipton KF, Garrett NJ. Inhibition of monoamine oxidase by amphetamine and related compounds. Biochemical Pharmacol. 1976;25:2073–2077. https://doi.org/10.1016/0006-2952(76)90432-9

    CAS  Article  Google Scholar 

  30. Mandell AJ, Morgan M. Amphetamine induced increase in tyrosine hydroxylase activity. Nature. 1970;227:75–76. https://doi.org/10.1038/227075a0

    CAS  PubMed  Article  Google Scholar 

  31. Cruickshank CC, Dyer KR. A review of the clinical pharmacology of methamphetamine. Addiction. 2009;104:1085–1099. https://doi.org/10.1111/j.1360-0443.2009.02564.x

    PubMed  Article  Google Scholar 

  32. Barr AM, Panenka WJ, MacEwan GW, Thornton AE, Lang DJ, Honer WG, et al. The need for speed: an update on methamphetamine. addiction J psychiatry Neurosci: JPN. 2006;31:301–313.

    PubMed  PubMed Central  Google Scholar 

  33. Simon SL, Carnell J, Brethen P, Rawson R, Ling W. Cognitive impairment in individuals currently using methamphetamine. Am J Addictions. 2000;9:222–231.

    CAS  Article  Google Scholar 

  34. Cadet JL, Brannock C. Free radicals and the pathobiology of brain dopamine systems. Neurochem Int. 1998;32:117–131. https://doi.org/10.1016/s0197-0186(97)00031-4

    CAS  PubMed  Article  Google Scholar 

  35. Shin EJ, Tran HQ, Nguyen PT, Jeong JH, Nah SY, Jang CG, et al. Role of mitochondria in methamphetamine-induced dopaminergic neurotoxicity: involvement in oxidative stress, neuroinflammation, and pro-apoptosis-a review. Neurochem Res. 2018;43:66–78. https://doi.org/10.1007/s11064-017-2318-5

    CAS  PubMed  Article  Google Scholar 

  36. Lin M, Chandramani-Shivalingappa P, Jin H, Ghosh A, Anantharam V, Ali S, et al. Methamphetamine-induced neurotoxicity linked to ubiquitin-proteasome system dysfunction and autophagy-related changes that can be modulated by protein kinase C delta in dopaminergic neuronal cells. Neuroscience. 2012;210:308–332. https://doi.org/10.1016/j.neuroscience.2012.03.004

    CAS  PubMed  Article  Google Scholar 

  37. Raineri M, Gonzalez B, Goitia B, Garcia-Rill E, Krasnova IN, Cadet JL, et al. Modafinil abrogates methamphetamine-induced neuroinflammation and apoptotic effects in the mouse striatum. PLoS One. 2012;7:e46599 https://doi.org/10.1371/journal.pone.0046599

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  38. Moratalla R, Khairnar A, Simola N, Granado N, García-Montes JR, Porceddu PF, et al. Amphetamine-related drugs neurotoxicity in humans and in experimental animals: Main mechanisms. Prog Neurobiol. 2017;155:149–170. https://doi.org/10.1016/j.pneurobio.2015.09.011

    CAS  PubMed  Article  Google Scholar 

  39. Xu E, Liu J, Liu H, Wang X, Xiong H. Role of microglia in methamphetamine-induced neurotoxicity. Int J Physiol Pathophysiol Pharm. 2017;9:84–100.

    CAS  Google Scholar 

  40. Shah A, Silverstein PS, Singh DP, Kumar A. Involvement of metabotropic glutamate receptor 5, AKT/PI3K signaling and NF-κB pathway in methamphetamine-mediated increase in IL-6 and IL-8 expression in astrocytes. J Neuroinflammation. 2012;9:52 https://doi.org/10.1186/1742-2094-9-52

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. Yang X, Wang Y, Li Q, Zhong Y, Chen L, Du Y, et al. The Main Molecular Mechanisms Underlying Methamphetamine- Induced Neurotoxicity and Implications for Pharmacological Treatment. Front Mol Neurosci. 2018;11:186–186. https://doi.org/10.3389/fnmol.2018.00186

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  42. Bartzokis G, Beckson M, Lu PH, Edwards N, Rapoport R, Wiseman E, et al. Age-related brain volume reductions in amphetamine and cocaine addicts and normal controls: implications for addiction research. Psychiatry Res: Neuroimaging. 2000;98:93–102.

    CAS  PubMed  Article  Google Scholar 

  43. Bartzokis G, Beckson M, Lu PH, Nuechterlein KH, Edwards N, Mintz J. Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58:461–465. https://doi.org/10.1001/archpsyc.58.5.461

    CAS  PubMed  Article  Google Scholar 

  44. Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, et al. Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci. 2004;24:6028–6036.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  45. McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C] WIN-35,428. J Neurosci. 1998;18:8417–8422.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, et al. Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry. 2001;158:1206–1214.

    CAS  PubMed  Article  Google Scholar 

  47. Volkow ND, Chang L, Wang G-J, Fowler JS, Leonido-Yee M, Franceschi D, et al. Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry. 2001;158:377–382.

    CAS  PubMed  Article  Google Scholar 

  48. Sekine Y, Minabe Y, Ouchi Y, Takei N, Iyo M, Nakamura K, et al. Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry. 2003;160:1699–1701.

    PubMed  Article  Google Scholar 

  49. London E, Simon S, Berman S, Mandelkern M, Lichtman A, Bramen J, et al. Regional cerebral dysfunction associated with mood disturbances in abstinent methamphetamine abusers. Arch Gen Psychiatry. 2004;61:73–84.

    PubMed  Article  Google Scholar 

  50. Richards JR, Harms BN, Kelly A, Turnipseed SD. Methamphetamine use and heart failure: prevalence, risk factors, and predictors. Am J Emerg Med. 2018;36:1423–1428. https://doi.org/10.1016/j.ajem.2018.01.001

    PubMed  Article  Google Scholar 

  51. Maeno Y, Iwasa M, Inoue H, Koyama H, Matoba R. Methamphetamine induces an increase in cell size and reorganization of myofibrils in cultured adult rat cardiomyocytes. Int J Leg Med. 2000;113:201–207.

    CAS  Article  Google Scholar 

  52. Metcalfe J, Ueland K. Maternal cardiovascular adjustments to pregnancy. Prog Cardiovasc Dis. 1974;16:363–374. https://doi.org/10.1016/0033-0620(74)90028-0

    CAS  PubMed  Article  Google Scholar 

  53. Ueland K, Novy MJ, Peterson EN, Metcalfe J. Maternal cardiovascular dynamics. IV. The influence of gestational age on the maternal cardiovascular response to posture and exercise. Am J Obstet Gynecol. 1969;104:856–864.

    CAS  PubMed  Article  Google Scholar 

  54. Burchfield DJ, Lucas VW, Abrams RM, Miller RL, DeVane CL. Disposition and pharmacodynamics of methamphetamine in pregnant sheep. Jama. 1991;265:1968–1973. https://doi.org/10.1001/jama.1991.03460150072026

    CAS  PubMed  Article  Google Scholar 

  55. Stek AM, Fisher BK, Baker RS, Lang U, Tseng C-Y, Clark KE. Maternal and fetal cardiovascular responses to methamphetamine in the pregnant sheep. Am J Obstet Gynecol. 1993;169:888–897.

    CAS  PubMed  Article  Google Scholar 

  56. Stek AM, Scott Baker R, Fisher BK, Lang U, Clark KE. Fetal responses to maternal and fetal methamphetamine administration in sheep. Am J Obstet Gynecol. 1995;173:1592–1598. https://doi.org/10.1016/0002-9378(95)90654-1

    CAS  PubMed  Article  Google Scholar 

  57. Acuff-Smith KD, Schilling MA, Fisher JE, Vorhees CV. Stage-specific effects of prenatal d-methamphetamine exposure on behavioral and eye development in rats. Neurotoxicology Teratol. 1996;18:199–215. https://doi.org/10.1016/0892-0362(95)02015-2

    CAS  Article  Google Scholar 

  58. Bottalico B, Larsson I, Brodszki J, Hernandez-Andrade E, Casslen B, Marsal K, et al. Norepinephrine transporter (NET), serotonin transporter (SERT), vesicular monoamine transporter (VMAT2) and organic cation transporters (OCT1, 2 and EMT) in human. Placenta pre-eclamptic normotensive pregnancies Placenta. 2004;25:518–529. https://doi.org/10.1016/j.placenta.2003.10.017

    CAS  PubMed  Article  Google Scholar 

  59. Gorman MC, Orme KS, Nguyen NT, Kent EJ, Caughey AB. Outcomes in pregnancies complicated by methamphetamine use. Am J Obstet Gynecol. 2014;211:429.e421–-429.e427. https://doi.org/10.1016/j.ajog.2014.06.005

    CAS  Article  Google Scholar 

  60. Ganapathy V. Drugs of abuse and human placenta. Life Sci. 2011;88:926–930. https://doi.org/10.1016/j.lfs.2010.09.015

    CAS  PubMed  Article  Google Scholar 

  61. Steiner E, Villén T, Hallberg M, Rane A. Amphetamine secretion in breast milk. Eur J Clin Pharm. 1984;27:123–124.

    CAS  Article  Google Scholar 

  62. Brecht M-L, Herbeck DM. Pregnancy and fetal loss reported by methamphetamine-using women. Subst Abus. 2014;8:25–33. https://doi.org/10.4137/SART.S14125

    Article  Google Scholar 

  63. Abdul-Khabir W, Hall T, Swanson AN, Shoptaw S. Intimate partner violence and reproductive health among methamphetamine-using women in los angeles: a qualitative pilot study. J Psychoact Drugs. 2014;46:310–316. https://doi.org/10.1080/02791072.2014.934978

    Article  Google Scholar 

  64. Kalaitzopoulos D-R, Chatzistergiou K, Amylidi A-L, Kokkinidis DG, Goulis DG. Effect of methamphetamine hydrochloride on pregnancy outcome: a systematic review and meta-analysis. J Addiction Med. 2018;12:220–226. https://doi.org/10.1097/adm.0000000000000391

    CAS  Article  Google Scholar 

  65. Šlamberová R, Pometlová M, Charousová P. Postnatal development of rat pups is altered by prenatal methamphetamine exposure. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30:82–88. https://doi.org/10.1016/j.pnpbp.2005.06.006

    CAS  Article  Google Scholar 

  66. Šlamberová R, Yamamotová A, Schutová B, Hrubá L, Pometlová M. Impact of prenatal methamphetamine exposure on the sensitivity to the same drug in adult male rats. Prague Med Rep. 2011;112:102–114.

    PubMed  Google Scholar 

  67. Garcia-Bournissen F, Rokach B, Karaskov T, Koren G. Methamphetamine detection in maternal and neonatal hair: implications for fetal safety. Arch Dis Child - Fetal Neonatal Ed. 2007;92:351–355. https://doi.org/10.1136/adc.2006.100156

    Article  Google Scholar 

  68. Won L, Bubula N, McCoy H, Heller A. Methamphetamine concentrations in fetal and maternal brain following prenatal exposure. Neurotoxicology Teratol. 2001;23:349–354.

    CAS  Article  Google Scholar 

  69. Eriksson M, Jonsson B, Steneroth G, Zetterstrom R. Cross-sectional growth of children whose mothers abused amphetamines during pregnancy. Acta Paediatr. 1994;83:612–617. https://doi.org/10.1111/j.1651-2227.1994.tb13091.x

    CAS  PubMed  Article  Google Scholar 

  70. Smith L, Yonekura ML, Wallace T, Berman N, Kuo J, Berkowitz C. Effects of prenatal methamphetamine exposure on fetal growth and drug withdrawal symptoms in infants born at term. J Dev Behav Pediatr. 2003;24:17–23. https://doi.org/10.1097/00004703-200302000-00006

    PubMed  Article  Google Scholar 

  71. Chomchai C, Manorom N, Watanarungsan P, Yossuck P, Chomchai S. Methamphetamine abuse during pregnancy and its health impact on neonates born at Siriraj Hospital, Bangkok, Thailand. Southeast Asian J tropical Med public health. 2004;35:228–231.

    Google Scholar 

  72. Stewart JL, Meeker JE. Fetal and infant deaths associated with maternal methamphetamine abuse. J Anal Toxicol. 1997;21:515–517. https://doi.org/10.1093/jat/21.6.515

    CAS  PubMed  Article  Google Scholar 

  73. McDonnell-Dowling K, Donlon M, Kelly JP. Methamphetamine exposure during pregnancy at pharmacological doses produces neurodevelopmental and behavioural effects in rat offspring. Int J Developmental Neurosci. 2014;35:42–51. https://doi.org/10.1016/j.ijdevneu.2014.03.005

    CAS  Article  Google Scholar 

  74. Vorhees CV, Skelton MR, Grace CE, Schaefer TL, Graham DL, Braun AA, et al. Effects of (+)-methamphetamine on path integration and spatial learning, but not locomotor activity or acoustic startle, align with the stress hyporesponsive period in rats. Int J Developmental Neurosci. 2009;27:289–298. https://doi.org/10.1016/j.ijdevneu.2008.12.003

    CAS  Article  Google Scholar 

  75. Smith LM, LaGasse LL, Derauf C, Grant P, Shah R, Arria A, et al. Prenatal methamphetamine use and neonatal neurobehavioral outcome. Neurotoxicology Teratol. 2008;30:20–28.

    CAS  Article  Google Scholar 

  76. Smith LM, LaGasse LL, Derauf C, Newman E, Shah R, Haning W, et al. Motor and cognitive outcomes through three years of age in children exposed to prenatal methamphetamine. Neurotoxicol Teratol. 2011;33:176–184. https://doi.org/10.1016/j.ntt.2010.10.004

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  77. Thompson VB, Heiman J, Chambers JB, Benoit SC, Buesing WR, Norman MK, et al. Long-term behavioral consequences of prenatal MDMA exposure. Physiol Behav. 2009;96:593–601.

    CAS  PubMed  Article  Google Scholar 

  78. Sussman S. Narcotic and methamphetamine use during pregnancy. Eff newborn infants Am J Dis Child. 1963;106:325–330. https://doi.org/10.1001/archpedi.1963.02080050327013

    CAS  Article  Google Scholar 

  79. Shah R, Diaz SD, Arria A, LaGasse LL, Derauf C, Newman E, et al. Prenatal methamphetamine exposure and short-term maternal and infant medical outcomes. Am J Perinatol. 2012;29:391–400.

    PubMed  PubMed Central  Article  Google Scholar 

  80. Smith LM, LaGasse LL, Derauf C, Grant P, Shah R, Arria A, et al. The infant development, environment, and lifestyle study: effects of prenatal methamphetamine exposure, polydrug exposure, and poverty on intrauterine growth. Pediatrics. 2006;118:1149–1156.

    PubMed  Article  Google Scholar 

  81. Nguyen D, Smith LM, LaGasse LL, Derauf C, Grant P, Shah R, et al. Intrauterine growth of infants exposed to prenatal methamphetamine: results from the infant development, environment, and lifestyle study. J pediatrics. 2010;157:337–339.

    Article  Google Scholar 

  82. Gargari, SS, Fallahian, M, Haghighi, L, Hosseinnezhad-Yazdi, M, Dashti, E & Dolan, K. Maternal and neonatal complications of substance abuse in Iranian pregnant women. Acta Med Iran. 2012;50:411–16.

  83. Oro AS, Dixon SD. Perinatal cocaine and methamphetamine exposure: maternal and neonatal correlates. J pediatrics. 1987;111:571–578.

    CAS  Article  Google Scholar 

  84. Little BB, Snell LM, Gilstrap L 3rd. Methamphetamine abuse during pregnancy: outcome and fetal effects. Obstet Gynecol. 1988;72:541–544.

    CAS  PubMed  Google Scholar 

  85. Nelson MM, Forfar JO. Associations between drugs administered during pregnancy and congenital abnormalities of the fetus. Br Med J. 1971;1:523–527.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  86. Nora J, Vargo T, Nora A, Love K, Mcnamara D. Dexamphetamine: a possible environmental trigger in cardiovascular malformations. Lancet (Lond, Engl). 1970;1:1290–1291.

    CAS  Article  Google Scholar 

  87. Heinonen OP, Slone D & Shapiro S Birth defects and drugs in pregnancy. (Publishing Sciences Group Inc., Littleton, Massachusetts, USA, 1977).

  88. Sankaran DL, Satyan. Cardiovascular effects of prenatal methamphetamine exposure. https://clinicaltrials.gov/ct2/show/NCT04616625 (2020).

  89. Dixon SD, Bejar R. Echoencephalographic findings in neonates assciiated with maternal cocaine and methamphetamine use: Incidence and clinical correlates. J Pediatrics. 1989;115:770–778. https://doi.org/10.1016/S0022-3476(89)80661-4

    CAS  Article  Google Scholar 

  90. Maranella E, Mareri A, Nardi V, Di Natale C, Di Luca L, Conte E, et al. Severe neurologic and hepatic toxicity in a newborn prenatally exposed to methamphetamine. A case report. Brain Dev. 2019;41:191–194. https://doi.org/10.1016/j.braindev.2018.08.010

    PubMed  Article  Google Scholar 

  91. Chang L, Cloak C, Jiang CS, Farnham S, Tokeshi B, Buchthal S, et al. Altered neurometabolites and motor integration in children exposed to methamphetamine in utero. Neuroimage. 2009;48:391–397. https://doi.org/10.1016/j.neuroimage.2009.06.062

    CAS  PubMed  Article  Google Scholar 

  92. Eze N, Smith LM, LaGasse LL, Derauf C, Newman E, Arria A, et al. School-aged outcomes following prenatal methamphetamine exposure: 7.5-year follow-up from the infant development, environment, and lifestyle study. J pediatrics. 2016;170:34–38.e31. https://doi.org/10.1016/j.jpeds.2015.11.070

    CAS  Article  Google Scholar 

  93. Smith LM, Diaz S, LaGasse LL, Wouldes T, Derauf C, Newman E, et al. Developmental and behavioral consequences of prenatal methamphetamine exposure: a review of the Infant Development, Environment, and Lifestyle (IDEAL) study. Neurotoxicol Teratol. 2015;51:35–44. https://doi.org/10.1016/j.ntt.2015.07.006

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Morie KP, Crowley MJ, Mayes LC, Potenza MN. Prenatal drug exposure from infancy through emerging adulthood: results from neuroimaging. Drug alcohol Depend. 2019;198:39–53. https://doi.org/10.1016/j.drugalcdep.2019.01.032

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Warton FL, Taylor PA, Warton CMR, Molteno CD, Wintermark P, Lindinger NM, et al. Prenatal methamphetamine exposure is associated with corticostriatal white matter changes in neonates. Metab brain Dis. 2018;33:507–522. https://doi.org/10.1007/s11011-017-0135-9

    CAS  PubMed  Article  Google Scholar 

  96. Hansen RL, Struthers JM, Gospe SM Jr. Visual evoked potentials and visual processing in stimulant drug‐exposed infants. Developmental Med Child Neurol. 1993;35:798–805.

    CAS  Article  Google Scholar 

  97. LaGasse LL, Derauf C, Smith LM, Newman E, Shah R, Neal C, et al. Prenatal methamphetamine exposure and childhood behavior problems at 3 and 5 years of age. Pediatrics. 2012;129:681–688. https://doi.org/10.1542/peds.2011-2209

    PubMed  PubMed Central  Article  Google Scholar 

  98. Derauf C, LaGasse LL, Smith LM, Newman E, Shah R, Neal CR, et al. Prenatal methamphetamine exposure and inhibitory control among young school-age children. J pediatrics. 2012;161:452–459.

    CAS  Article  Google Scholar 

  99. Wouldes TA, LaGasse LL, Huestis MA, DellaGrotta S, Dansereau LM, Lester BM. Prenatal methamphetamine exposure and neurodevelopmental outcomes in children from 1 to 3 years. Neurotoxicology Teratol. 2014;42:77–84.

    CAS  Article  Google Scholar 

  100. Kwiatkowski MA, Donald KA, Stein DJ, Ipser J, Thomas KG, Roos A. Cognitive outcomes in prenatal methamphetamine exposed children aged six to seven years. Compr psychiatry. 2018;80:24–33.

    PubMed  Article  Google Scholar 

  101. Kiblawi ZN, Smith LM, LaGasse LL, Derauf C, Newman E, Shah R, et al. The effect of prenatal methamphetamine exposure on attention as assessed by continuous performance tests: results from the Infant Development, Environment, and Lifestyle study. J Dev Behav Pediatr. 2013;34:31–37. https://doi.org/10.1097/DBP.0b013e318277a1c5

    PubMed  PubMed Central  Article  Google Scholar 

  102. Abar B, LaGasse LL, Derauf C, Newman E, Shah R, Smith LM, et al. Examining the relationships between prenatal methamphetamine exposure, early adversity, and child neurobehavioral disinhibition. Psychol Addict Behav. 2013;27:662–673. https://doi.org/10.1037/a0030157

    PubMed  Article  Google Scholar 

  103. Huang X, Chen YY, Shen Y, Cao X, Li A, Liu Q, et al. Methamphetamine abuse impairs motor cortical plasticity and function. Mol psychiatry. 2017;22:1274–1281. https://doi.org/10.1038/mp.2017.143

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Limanaqi F, Gambardella S, Biagioni F, Busceti CL, Fornai F. Epigenetic Effects Induced by Methamphetamine and Methamphetamine-Dependent Oxidative Stress. Oxid Med Cell Longev. 2018;2018:4982453 https://doi.org/10.1155/2018/4982453

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  105. Chang L, Smith LM, LoPresti C, Yonekura ML, Kuo J, Walot I, et al. Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Res. 2004;132:95–106. https://doi.org/10.1016/j.pscychresns.2004.06.004

    CAS  PubMed  Article  Google Scholar 

  106. ACOG. Methamphetamine Abuse in Women of Reproductive Age. ACOG Committee Opinion No. 479. https://www.acog.org/Clinical-Guidance-and-Publications/Committee-Opinions/Committee-on-Health-Care-for-Underserved-Women/Methamphetamine-Abuse-in-Women-of-Reproductive-Age?IsMobileSet=false, 1-5 (2011, reaffirmed 2021).

  107. Wade M, Fox NA, Zeanah CH, Nelson CA. Effect of foster care intervention on trajectories of general and specific psychopathology among children with histories of institutional rearing: a randomized clinical trialeffect of foster care intervention on psychopathology among children with histories of institutional rearingeffect of foster care intervention on psychopathology among children with histories of institutional rearing. JAMA Psychiatry. 2018;75:1137–1145. https://doi.org/10.1001/jamapsychiatry.2018.2556

    PubMed  PubMed Central  Article  Google Scholar 

  108. Windsor J, Benigno JP, Wing CA, Carroll PJ, Koga SF, Nelson CA 3rd, et al. Effect of foster care on young children’s language learning. Child Dev. 2011;82:1040–1046. https://doi.org/10.1111/j.1467-8624.2011.01604.x

    PubMed  PubMed Central  Article  Google Scholar 

  109. Twomey J, LaGasse L, Derauf C, Newman E, Shah R, Smith L, et al. Prenatal methamphetamine exposure, home environment, and primary caregiver risk factors predict child behavioral problems at 5 years. Am J Orthopsychiatry. 2013;83:64.

    PubMed  PubMed Central  Article  Google Scholar 

  110. Messina N, Jeter K. Parental methamphetamine use and manufacture: child and familial outcomes. J public child Welf. 2012;6:296–312.

    PubMed  PubMed Central  Article  Google Scholar 

  111. Chu EK, Smith LM, Derauf C, Newman E, Neal CR, Arria AM, et al. Behavior problems during early childhood in children with prenatal methamphetamine exposure. Pediatrics. 2020;146:e20190270. https://doi.org/10.1542/peds.2019-0270

Download references

Acknowledgements

The authors would like to thank the funding sources listed below.

Funding

DS’s effort was supported by the Children’s Miracle Network research grant at University of California Davis, Child Health Research Grant from UC Davis Pediatrics and First Tech Federal Credit Union and Neonatal Resuscitation Program Research Grant from Canadian Pediatric Society. SL and VM received no external funding. The funder/sponsor did not participate in this work.

Author information

Affiliations

Authors

Contributions

DS conceptualized, designed, wrote the first draft, reviewed, and revised the manuscript. SL contributed to the concept, wrote part of the manuscript, provided illustrations, reviewed, and revised the manuscript. VM contributed to the concept, wrote part of the manuscript, reviewed, and revised the manuscript. All the authors have approved the final version of the manuscript as submitted. All authors agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Deepika Sankaran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

41372_2021_1271_MOESM1_ESM.pdf

Table S1: Summary of animal and human studies evaluating the effect of methamphetamine (MA) exposure during pregnancy on the fetus and the newborn infant.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sankaran, D., Lakshminrusimha, S. & Manja, V. Methamphetamine: burden, mechanism and impact on pregnancy, the fetus, and newborn. J Perinatol 42, 293–299 (2022). https://doi.org/10.1038/s41372-021-01271-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41372-021-01271-8

Further reading

Search

Quick links