Abstract
Soon after it was discovered that intense laser pulses of nanosecond duration from a ruby laser could anneal the lattice of silicon, it was established that this so-called pulsed laser annealing is a thermal process. Although the radiation energy is transferred to the electrons, the electrons transfer their energy to the lattice on the timescale of the excitation. The electrons and the lattice remain in equilibrium and the laser simply 'heats' the solid to the melting temperature within the duration of the laser pulse. For ultrashort laser pulses in the femtosecond regime, however, thermal processes (which take several picoseconds) and equilibrium thermodynamics cannot account for the experimental data. On excitation with femtosecond laser pulses, the electrons and the lattice are driven far out of equilibrium and disordering of the lattice can occur because the interatomic forces are modified due to the excitation of a large (10% or more) fraction of the valence electrons to the conduction band. This review focuses on the nature of the non-thermal transitions in semiconductors under femtosecond laser excitation.
Your institute does not have access to this article
Relevant articles
Open Access articles citing this article.
-
Single-shot femtosecond bulk micromachining of silicon with mid-IR tightly focused beams
Scientific Reports Open Access 07 May 2022
-
Nonequilibrium band occupation and optical response of gold after ultrafast XUV excitation
Scientific Reports Open Access 18 March 2022
-
Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics
Nature Communications Open Access 28 February 2022
Access options
Subscription info for Chinese customers
We have a dedicated website for our Chinese customers. Please go to naturechina.com to subscribe to this journal.
Buy article
Get time limited or full article access on ReadCube.
$32.00
All prices are NET prices.








References
Shank, C.V. in Ultrashort Laser Pulses – Generation and Applications (ed. Kaiser, W) 5–34 (Springer, Berlin and New York, 1993).
Hirlimann, C. in Femtosecond Laser Pulses – Principles and Experiments (ed. Rullière, C.) 83–110 (Springer, Berlin, 1998).
Rose-Petruck, C. et al. J. Picosecond-milliångstrom lattice dynamics measured by ultrafast X-ray diffraction. Nature 398, 310–312 (1999).
van Driel, H.M. Kinetics of high-density plasmas generated in Si by 1.06- and 0.53-μm picosecond laser pulses. Phys. Rev. B. 35, 8166–8176 (1987).
Liu, P.L., Yen, R. & Bloembergen, N. Picosecond laser-induced melting and resolidification morphology on Si. Appl. Phys. Lett. 34, 864–866 (1979).
Wang, J.-K., Saeta, P., Buijs, M., Malvezzi, M. & Mazur, E. in Ultrafast Phenomena VI (eds Yajma, T., Yoshihara, K., Harris, C.B. & Shionoya, S.) 236–239 (Springer, Berlin, 1989).
Balistreri, M.L.M., Gersen, H., Korterik, J.P., Kuipers, L. & van Hulst, N.F. Tracking femtosecond laser pulses in space and time. Science 295, 1080–1082 (2001).
Stapelfeldt, H., Constant, E. & Corkum, P.B. Femtoscience: from femtoseconds to attoseconds. Prog. Cryst. Growth Charact. 33, 209–215 (1996).
Zewail, A.H. Femtochemistry: Atomic-scale dynamics of the chemical bond. J. Phys. Chem. A 104, 5660–5694 (2000).
Callan, J.P. in Ultrafast Dynamics And Phase Changes In Solids Excited By Femtosecond Laser Pulses 59–104 Thesis, Harvard Univ., Cambridge, (2000).
Callan, J.P., Kim, A.M.-T., Roeser, C.A.D., Mazur, E. Ultrafast dynamics and phase changes in highly excited GaAs. Semiconduct. Semimet. 67, 151–203 (2001).
Becker, P.C. et al. Femtosecond photon echoes from band-to-band transitions in GaAs. Phys. Rev. Lett. 61, 1647–1649 (1988).
Wang, J.-K., Saeta, P., Buijs, M. & Mazur, E. in Nonlinear Optics and Ultrafast Phenomena (eds Alfano, R. R. & Rothberg, L.J.) 61–64 (Nora, New York, 1990).
Wang, J.-K., Saeta, P., Siegal, Y., Mazur, E. & Bloembergen, N. in Ultrafast Phenomena VI (eds Harris, C. B., Ippen, E. & Zewail, A.H.) 321–323 (Springer, Berlin, 1990).
Wang, J.-K. Femtosecond Nonlinear Optics In Gases And Solids Thesis, Harvard Univ., Cambridge, (1992).
Shank, C.V., Yen, R. & Hirlimann, C. Time-resolved reflectivity measurements of femtosecond-optical-pulse-induced phase transitions in silicon. Phys. Rev. Lett. 50, 454–457 (1983).
Lowndes, D.H. & Jellison, G.E. Jr. in Semiconductors and Semimetals Vol. 23 (eds Wood, R.F., White, C.W. & Young, R.T.) 313–404 (Academic, Orlando, 1984).
Van Vechten, J.A., Tsu, R., Saris, F.W. & Hoonhout, D. Reasons to believe pulsed laser annealing of Si does not involve simple thermal melting. Phys. Lett. A 74, 417–421 (1979).
Corkum, P.B. Attosecond pulses at last. Nature 403, 845–846 (2000).
Paul, P.M. et al. Observation of a train of attosecond pulses from high harmonic generation. Science 292, 1689–1692 (2001).
Drescher, M. et al. X-ray pulses approaching the attosecond frontier. Science 291, 1923–1927 (2001).
Silberberg, Y. Physics at the attosecond frontier. Nature 414, 494–495 (2001).
Hentschel, M. et al. Attosecond metrology. Nature 414, 509–513 (2001).
Papadogiannis, N.A., Witzel, B., Kalpouzos, C. & Charalambidis, D. Observation of attosecond light localization in higher order harmonic generation. Phys. Rev. Lett. 83, 4289–4292 (1999).
Papadogiannis, N.A. et al. Reply. Phys. Rev. Lett. 87, 109402 (2001).
Symposium Q, MRS Spring Meeting, 2001. Femtosecond materials science and technology. Mater. Res. Soc. Bull. 26, 560–571 (2001).
Bányai, L. et al. Exciton-KLO-phonon quantum kinetics: Evidence of memory effects in bulk GaAs. Phys. Rev. Lett. 75, 2188–2191 (1995).
Bar-Ad, S. & Chemla, D.S. Quantum kinetics regime during and immediately after laser excitation of semiconductors. Mater. Sci. Eng. B. 48, 83–87 (1997).
Zimmerman, R. in Many Particle Theory of Highly Excited Semiconductors (eds Eberling, W., Meiling, W., Uhlmann, A. & Wilhelmi, B.) 5–86 (Teubner-Texte zur Physik, Leipzig, 1988).
Kalt, H. & Rinker, M. Band-gap renormalization in semiconductors with multiple inequivalent valleys. Phys. Rev. B. 45, 1139–1154 (1992).
Glezer, E.N., Siegel, Y., Huang, L. & Mazur, E. The behavior of chi2 during laser-induced phase transitions in GaAs. Phys. Rev. B. 51, 9589–9596 (1995).
Solis, J., Afonso, C.N., Trull, J.F. & Morilla, M.C. Fast crystallizing GeSb alloys for optical data storage. J. Appl. Phys. 75, 7788–7794 (1994).
Siegal, Y., Glezer, E.N. & Mazur, E. Dielectric constant of GaAs during subpicosecond laser-induced phase transition. Phys. Rev. B 49, 16403–16406 (1994).
Siegal, Y., Glezer, E.N., Huang, L. & Mazur, E. Laser-induced phase transitions in semiconductors. Annu. Rev. Mater. Sci. 25, 223–247 (1995).
Malvezzi, A.M., Kurz, H. & Bloembergen, N. in Energy Beam-Solid Interactions and Transient Thermal Processing (eds Biegelsen, D.K., Rozgonyi, G.A. & Shank, C.V.) 75–80 (The Materials Research Society, Pittsburgh, 1985).
Downer, M.C. & Shank, C.V. Ultrafast heating of silicon on sapphire by femtosecond optical pulses. Phys. Rev. Lett. 56, 761–764 (1986).
Malvezzi, A.M. in Excited-State Spectroscopy in Solids (eds Grassano, U.M. & Terzi, N.) 335–354 (North-Holland Physics, Amsterdam, 1987).
Preston, J.S., van Driel, H.M. & Sipe J.E. Order-disorder transitions in the melt morphology of laser-irradiated silicon. Phys. Rev. Lett. 58, 69–72 (1987).
Saeta, P., Wang, J.-K., Siegal, Y., Bloembergen, N. & Mazur, E. Ultrafast electronic disordering during femtosecond laser melting of GaAs. Phys. Rev. Lett. 67, 1023–1026 (1991).
Van Vechten, J.A., Tsu, R. & Saris, F.W. Nonthermal pulsed laser annealing of Si; Plasma annealing. Phys. Lett. A 74, 422–426 (1979).
von der Linde, D. in Resonances – A Volume in Honor of the 70th Birthday of Nicolaas Bloembergen (eds Levinson, M.D., Mazur, E., Pershan, P.S. & Shen, Y.R.) 337–347 (World Scientific, Singapore, 1990).
Shank, C.V., Yen, Y. & Hirlimann, C. Femtosecond-time-resolved surface structural dynamics of optically excited silicon. Phys. Rev. Lett. 51, 900–902 (1983).
Tom, H.W.K., Heinz, T.F. & Shen, Y.R. Second-harmonic reflection from silicon surfaces and its relation to structural symmetry. Phys. Rev. Lett. 51, 1983–1986 (1983).
Tom, H.W.K., Aumiller, G.D. & Briti-Cruz, C.H. Time-resolved study of laser-induced disorder of Si surfaces. Phys. Rev. Lett. 60, 1438–1441 (1988).
Govorkov, S.V., Shumay, I.L., Rudolph, W. & Schröder, T. Time-resolved second-harmonic study of femtosecond laser-induced disordering of GaAs surfaces. Opt. Lett. 16, 1013–1015 (1991).
Govorkov, S.V., Emelyanov, V.I., Koroteev, N.I. & Shumay, I.L. Femtosecond dynamics of laser-induced phase-transition of the GaAs surface layer to a centrosymmetric phase. J. Lumin. 53, 153–158 (1992).
Govorkov, S.V., Schröder, T., Shumay, I.L. & Heist, P. Transient gratings and second-harmonic probing of the phase transformation of a GaAs surface under femtosecond laser irradiation. Phys. Rev. B 46, 6864–6868 (1992).
Sokolowski-Tinten, K., Bialkowski, J. & von der Linde, D. Ultrafast laser-induced order-disorder transitions in semiconductors. Phys. Rev. B 51, 14186–14198 (1995).
Siegal, Y., Glezer, E.N. & Mazur, E. Dielectric constant of GaAs during subpicosecond laser-induced phase transition. Phys. Rev. B 49, 16403–16406 (1994).
Glezer, E.N., Siegal, Y., Huang, L. & Mazur, E. Laser-induced bandgap collapse in GaAs. Phys. Rev. B 51, 6959–6970 (1995).
Glezer, E.N., Huang, L., Siegal, Y., Callan, J.P. & Mazur, E. in Proc. Mater. Res. Soc. Symp. Vol. 397 (Eds Singh, R., Norton, D., Laude, L., Narayan, J. & Cheung, J.) 3–20 (The Materials Research Society, Pittsburgh, 1995).
Glezer, E.N. et al. Three-dimensional optical storage inside transparent materials. Opt. Lett. 21, 2023–2025 (1996).
Huang, L., Callan, J.P., Glezer, E.N. & Mazur, E. GaAs under ultrafast excitation: response of the dielectric function. Phys. Rev. Lett. 80, 185–188 (1998).
Callan, J.P., Kim, A.M.–T., Huang, L. & Mazur, E. Ultrafast electron and lattice dynamics in semiconductors at high excited carrier dynamics. Chem. Phys. 251, 167–179 (2000).
Callan, J.P., Kim, A.M.-T., Roeser, C.A.D. & Mazur, E. Universal dynamics during and after ultrafast laser-induced semiconductor-to-metal transitions. Phys. Rev. B 64, 073201–073204 (2001).
Blakemore, J.S. Semiconducting and other major properties of gallium arsenide. J. Appl. Phys. 53, R123–R181 (1982).
Erman, M., Theeten, J.B., Chambon, P., Kelso, S.M. & Aspnes, D.E. Optical properties and damage analysis of GaAs single crystals partly amorphized by ion implantation. J. Appl. Phys. 56, 2664–2671 (1984).
Sokolowski-Tinten, K., Bialkowski, J. & von der Linde, D. Two distinct transitions in ultrafast solid-liquid phase transformations of GaAs. Appl. Phys. A 53, 227–234 (1991).
von der Linde, D., Sokolowski-Tinten, K. & Bialkowski, J. Laser-solid interaction in the femtosecond time regime. Appl. Surf. Sci. 109/110, 1–10 (1997).
Sokolowski-Tinten, K., Bialkowski, J., Boing, M., Cavalleri, A. & von der Linde, D. Thermal and non-thermal melting of gallium arsenide after femtosecond laser excitation. Phys. Rev. B. 58, R11805–R11808 (1998).
Siders, C.W. et al. Detection of non-thermal melting by ultrasfast X-ray diffraction. Science 286, 1340–1342 (1999).
Schoenlein, R.W. et al. Femtosecond X-ray pulses at 0.4 Å generated by 90° Thomson scattering: A tool for probing the structural dynamics of materials. Science 274, 236–238 (1996).
Rischel, C. et al. Femtosecond time-resolved X-ray diffraction from laser-heated organic films. Nature 390, 490–492 (1997).
Sokolowski-Tinten, K. et al. Femtosecond X-ray measurement of ultrafast melting and large acoustic transients. Phys. Rev. Lett. 87, 225701 (2001).
Shumay, I.L. & Höfer, U. Phase transformations of an InSb surface induced by strong femtosecond laser pulses. Phys. Rev. B 53, 15878–15884 (1996).
Chin, A.H. et al. Ultrafast structural dynamics in InSb probed by time-resolved X-ray diffraction. Phys. Rev. Lett. 83, 336–339 (1999).
Lindenberg, A.M. et al. Time-resolved X-ray diffraction from coherent phonons during a laser-induced phase transition. Phys. Rev. Lett. 84, 111–114 (2000).
Rousse, A. et al. Nonthermal melting in semiconductors measured at femtosecond resolution. Nature 410, 65–68 (2001).
Vetelino, J.F. & Gaur, S.P. & Mitra, S, S. Debye-Waller factor for zinc-blende-type crystals. Phys. Rev. B 5, 2360–2366 (1972).
Crain, J. et al. Theoretical study of high-density phases of covalent semiconductors. I. Ab initio treatment. Phys. Rev. B 49, 5329–5340 (1994).
Clark, S.J., Ackland, G.J. & Crain, J. Theoretical study of high-density phases of covalent semiconductors. II. Empirical treatment. Phys. Rev. B 49, 5341–5352 (1994).
Stampfli, P. & Bennemann, K.H. Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron–hole plasma. Phys. Rev. B 42, 7163–7173 (1990).
Stampfli, P. & Bennemann, K.H. Dynamical theory of the laser-induced lattice instability of silicon. Phys. Rev. B 46, 10686–10692 (1992).
Stampfli, P. & Bennemann, K.H. Time dependence of the laser-induced femtosecond lattice instability of Si and GaAs: Role of longitudinal optical distortions. Phys. Rev. B 49, 7299–7305 (1994).
Martin, R.M. Dielectric screening model for lattice vibrations of diamond-structure crystals. Phys. Rev. 186, 871 (1969).
Heine, V. & Van Vechten, J.A. Effect of electron–hole pairs on phonon frequencies in Si related to temperature dependence of bandgaps. Phys. Rev. B 13, 1622–1626 (1976).
Benedict, L.X. Dielectric function for model of laser-excited GaAs. Phys. Rev. B 63, 075202 (2001).
Stampfli, P. & Bennemann, K.H. Theory for the laser-induced femtosecond phase transition of silicon and GaAs. Appl. Phys. A 60, 191–196 (1995).
Silvestrelli, P.L., Alavi, A., Parrinello, M. & Frenkel, D. Ab initio molecular dynamics simulation of laser melting of silicon. Phys. Rev. Lett. 77, 3149–3152 (1996).
Graves, J.S. & Allen, R.E. Response of GaAs to fast intense laser pulse. Phys. Rev. B 58, 13627–13633 (1999).
Acknowledgements
Collaboration between the authors was made possible with support from the Department of Energy under the Environmental Management Science Program. We thank C. A. D. Roeser for a careful review of the manuscript and many helpful comments. S.K.S. acknowledges the support from the Pacific Northwest National Laboratory (PNNL) while writing this review. Battelle Memorial Institute operates PNNL for the United States Department of Energy under Contract DE-AC06-76RLO 1830.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Rights and permissions
About this article
Cite this article
Sundaram, S., Mazur, E. Inducing and probing non-thermal transitions in semiconductors using femtosecond laser pulses. Nature Mater 1, 217–224 (2002). https://doi.org/10.1038/nmat767
Issue Date:
DOI: https://doi.org/10.1038/nmat767
Further reading
-
Ultrafast infrared nano-imaging of far-from-equilibrium carrier and vibrational dynamics
Nature Communications (2022)
-
Nonequilibrium band occupation and optical response of gold after ultrafast XUV excitation
Scientific Reports (2022)
-
Single-shot femtosecond bulk micromachining of silicon with mid-IR tightly focused beams
Scientific Reports (2022)
-
Shape regulation of tapered microchannels in silica glass ablated by femtosecond laser with theoretical modeling and machine learning
Journal of Intelligent Manufacturing (2022)
-
Short and Ultrashort Laser Surface Processing of Alpha + Beta Titanium Alloy (Ti6Al4V): Present Status
Transactions of the Indian National Academy of Engineering (2022)