Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Materials for next-generation molecularly selective synthetic membranes

Abstract

Materials research is key to enable synthetic membranes for large-scale, energy-efficient molecular separations. Materials with rigid, engineered pore structures add an additional degree of freedom to create advanced membranes by providing entropically moderated selectivities. Scalability — the capability to efficiently and economically pack membranes into practical modules — is a critical yet often neglected factor to take into account for membrane materials screening. In this Progress Article, we highlight continuing developments and identify future opportunities in scalable membrane materials based on these rigid features, for both gas and liquid phase applications. These advanced materials open the door to a new generation of membrane processes beyond existing materials and approaches.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Molecular diffusion selective media.
Figure 2: Hybrid mixed-matrix materials.
Figure 3: CMS materials.
Figure 4: Practical membrane formats and structures.
Figure 5: Schematic illustrating material and structural design strategies within the composite membrane platform (noted in Fig. 4c) for liquid separations.

References

  1. Baker, R. W. Membrane Technology and Applications 2nd edn (Wiley, 2004).

    Google Scholar 

  2. Koros, W. J. & Lively, R. P. Water and beyond: expanding the spectrum of large-scale energy efficient separation processes. AIChE J. 58, 2624–2633 (2012).

    CAS  Google Scholar 

  3. Baker, R. W. Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41, 1393–1411 (2002).

    CAS  Google Scholar 

  4. Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Google Scholar 

  5. Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Google Scholar 

  6. Koros, W. J. & Fleming, G. K. Membrane-based gas separation. J. Membr. Sci. 83, 1–80 (1993).

    CAS  Google Scholar 

  7. Koros, W. J., Fleming, G. K., Jordan, S. M., Kim, T. H. & Hoehn, H. H. Polymeric membrane materials for solution-diffusion based permeation separations. Prog. Polym. Sci. 13, 339–401 (1988).

    CAS  Google Scholar 

  8. Robeson, L. M., Smith, Z. P., Freeman, B. D. & Paul, D. R. Contributions of diffusion and solubility selectivity to the upper bound analysis for glassy gas separation membranes. J. Membr. Sci. 453, 71–83 (2014).

    CAS  Google Scholar 

  9. Geise, G. M., Paul, D. R. & Freeman, B. D. Fundamental water and salt transport properties of polymeric materials. Prog. Polym. Sci. 39, 1–42 (2014).

    CAS  Google Scholar 

  10. Petropoulos, J. H. in Polymeric Gas Separation Membranes (eds Paul, D. R. & Yampolskii, Y. P.) 17–82 (CRC, 1993).

    Google Scholar 

  11. Karger, J. & Ruthven, D. M. Diffusion in Zeolites and Other Microporous Solids (Wiley, 1992).

    Google Scholar 

  12. Singh, A. & Koros, W. J. Significance of entropic selectivity for advanced gas separation membranes. Ind. Eng. Chem. Res. 35, 1231–1234 (1996).

    CAS  Google Scholar 

  13. Ning, X. & Koros, W. J. Carbon molecular sieve membranes derived from Matrimid® polyimide for nitrogen/methane separation. Carbon 66, 511–522 (2014).

    CAS  Google Scholar 

  14. Robeson, L. M. The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008).

    CAS  Google Scholar 

  15. Omole, I. C., Adams, R. T., Miller, S. J. & Koros, W. J. Effects of CO2 on a high performance hollow-fiber membrane for natural gas purification. Ind. Eng. Chem. Res. 49, 4887–4896 (2010).

    CAS  Google Scholar 

  16. O'Keeffe, M. & Yaghi, O. M. Deconstructing the crystal structures of metal–organic frameworks and related materials into their underlying nets. Chem. Rev. 112, 675–702 (2012).

    CAS  Google Scholar 

  17. Deng, H. X. et al. Large-pore apertures in a series of metal–organic frameworks. Science 336, 1018–1023 (2012).

    CAS  Google Scholar 

  18. Bae, Y.S. & Snurr, R. Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angew. Chem. Int. Ed. 50, 11586–11596 (2011).

    CAS  Google Scholar 

  19. Bae, Y. S., Farha, O. K., Hupp, J. T. & Snurr, R. Q. Enhancement of CO2/N2 selectivity in a metal–organic framework by cavity modification. J. Mater. Chem. 19, 2131–2134 (2009).

    CAS  Google Scholar 

  20. Cadiau, A., Adil, K., Bhatt, P. M., Belmabkhout, Y. & Eddaoudi, M. A metal–organic framework-based splitter for separating propylene from propane. Science 353, 137–140 (2016).

    CAS  Google Scholar 

  21. Zhang, C. & Koros, W. J. Tailoring the transport properties of zeolitic imidazolate frameworks by post-synthetic thermal modification. ACS Appl. Mater. Interfaces 7, 23407–23411 (2015).

    CAS  Google Scholar 

  22. Eum, K. et al. Highly tunable molecular sieving and adsorption properties of mixed-linker zeolitic imidazolate frameworks. J. Am. Chem. Soc. 137, 4191–4197 (2015).

    CAS  Google Scholar 

  23. Perez, E. V., Balkus, K. J., Ferraris, J. P. & Musselman, I. H. Mixed-matrix membranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165–173 (2009).

    CAS  Google Scholar 

  24. Duan, C., Jie, X., Liu, D., Cao, Y. & Yuan, Q. Post-treatment effect on gas separation property of mixed matrix membranes containing metal organic frameworks. J. Membr. Sci. 466, 92–102 (2014).

    CAS  Google Scholar 

  25. Zhang, C. & Koros, W. J. Zeolitic imidazolate framework-enabled membranes: challenges and opportunities. J. Phys. Chem. Lett. 6, 3841–3849 (2015).

    CAS  Google Scholar 

  26. Kwon, H. T. & Jeong, H.K. In situ synthesis of thin zeolitic–imidazolate framework ZIF-8 membranes exhibiting exceptionally high propylene/propane separation. J. Am. Chem. Soc. 135, 10763–10768 (2013).

    CAS  Google Scholar 

  27. Liu, D. F., Ma, X. L., Xi, H. X. & Lin, Y. S. Gas transport properties and propylene/propane separation characteristics of ZIF-8 membranes. J. Membr. Sci. 451, 85–93 (2014).

    Google Scholar 

  28. Pan, Y. C., Liu, W., Zhao, Y. J., Wang, C. Q. & Lai, Z. P. Improved ZIF-8 membrane: effect of activation procedure and determination of diffusivities of light hydrocarbons. J. Membr. Sci. 493, 88–96 (2015).

    CAS  Google Scholar 

  29. Brown, A. J. et al. Interfacial microfluidic processing of metal–organic framework hollow fiber membranes. Science 345, 72–75 (2014).

    CAS  Google Scholar 

  30. Liu, Q., Wang, N., Caro, J. & Huang, A. Bio-inspired polydopamine: a versatile and powerful platform for covalent synthesis of molecular sieve membranes. J. Am. Chem. Soc. 135, 17679–17682 (2013).

    CAS  Google Scholar 

  31. Rao, M. B. & Sircar, S. Nanoporous carbon membranes for separation of gas-mixtures by selective surface flow. J. Membr. Sci. 85, 253–264 (1993).

    CAS  Google Scholar 

  32. Pinnau, I., Casillas, C. G., Morisato, A. & Freeman, B. D. Hydrocarbon/hydrogen mixed gas permeation in poly(1trimethylsilyl1-propyne) (PTMSP), poly(1phenyl1-propyne) (PPP), and PTMSP/PPP blends. J. Polym. Sci. Pol. Phys. 34, 2613–2621 (1996).

    CAS  Google Scholar 

  33. Thomas, S., Pinnau, I., Du, N. & Guiver, M. D. Hydrocarbon/hydrogen mixed-gas permeation properties of PIM-1, an amorphous microporous spirobisindane polymer. J. Membr. Sci. 338, 1–4 (2009).

    CAS  Google Scholar 

  34. Rui, Z., James, J. B., Kasik, A. & Lin, Y. S. Metal–organic framework membrane process for high purity CO2 production. AIChE J. 62, 3836–3841 (2016).

    CAS  Google Scholar 

  35. Park, H. B. et al. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science 318, 254–258 (2007).

    CAS  Google Scholar 

  36. McKeown, N. B. & Budd, P. M. Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage. Chem. Soc. Rev. 35, 675–683 (2006).

    CAS  Google Scholar 

  37. Sanders, D. E. et al. Energy-efficient polymeric gas separation membranes for a sustainable future: a review. Polymer 54, 4729–4761 (2013).

    CAS  Google Scholar 

  38. Swaidan, R., Ghanem, B. & Pinnau, I. Fine-tuned intrinsically ultramicroporous polymers redefine the permeability/selectivity upper bounds of membrane-based air and hydrogen separations. ACS Macro Lett. 4, 947–951 (2015).

    CAS  Google Scholar 

  39. Jung, C. H., Lee, J. E., Han, S. H., Park, H. B. & Lee, Y. M. Highly permeable and selective poly(benzoxazolecoimide) membranes for gas separation. J. Membr. Sci. 350, 301–309 (2010).

    CAS  Google Scholar 

  40. Carta, M. et al. Triptycene induced enhancement of membrane gas selectivity for microporous Tröger's base polymers. Adv. Mater. 26, 3526–3531 (2014).

    CAS  Google Scholar 

  41. Ghanem, B. S., Swaidan, R., Ma, X., Litwiller, E. & Pinnau, I. Energy-efficient hydrogen separation by AB-type ladder-polymer molecular sieves. Adv. Mater. 26, 6696–6700 (2014).

    CAS  Google Scholar 

  42. Petropoulos, J. H., Papadokostaki, K. G., Minelli, M. & Doghieri, F. On the role of diffusivity ratio and partition coefficient in diffusional molecular transport in binary composite materials, with special reference to the Maxwell equation. J. Membr. Sci. 456, 162–166 (2014).

    CAS  Google Scholar 

  43. Zhang, C., Dai, Y., Johnson, J. R., Karvan, O. & Koros, W. J. High performance ZIF-8/6FDA-DAM mixed matrix membrane for propylene/propane separations. J. Membr. Sci. 389, 34–42 (2012).

    CAS  Google Scholar 

  44. Swaidan, R. J., Ma, X. H. & Pinnau, I. Tuning PIM-PI-OH/Z-MOF-Based Mixed-Matrix Membranes for Highly Efficient Propylene/Propane Separation. In NAMS 2016 (2016).

    Google Scholar 

  45. Bachman, J. E., Smith, Z. P., Li, T., Xu, T. & Long, J. R. Enhanced ethylene separation and plasticization resistance in polymer membranes incorporating metal–organic framework nanocrystals. Nat. Mater. 15, 845–849 (2016).

    CAS  Google Scholar 

  46. Geier, S. J. et al. Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn). Chem. Sci. 4, 2054–2061 (2013).

    CAS  Google Scholar 

  47. Lin, R. et al. Mixed matrix membranes with strengthened MOFs/polymer interfacial interaction and improved membrane performance. ACS Appl. Mater. Interfaces 6, 5609–5618 (2014).

    CAS  Google Scholar 

  48. Seoane, B. et al. Metal–organic framework based mixed matrix membranes: a solution for highly efficient CO2 capture? Chem. Soc. Rev. 44, 2421–2454 (2015).

    CAS  Google Scholar 

  49. Steel, K. M. & Koros, W. J. An investigation of the effects of pyrolysis parameters on gas separation properties of carbon materials. Carbon 43, 1843–1856 (2005).

    CAS  Google Scholar 

  50. Salinas, O., Ma, X. H., Litwiller, E. & Pinnau, I. Ethylene/ethane permeation, diffusion and gas sorption properties of carbon molecular sieve membranes derived from the prototype ladder polymer of intrinsic microporosity (PIM-1). J. Membr. Sci. 504, 133–140 (2016).

    CAS  Google Scholar 

  51. Ma, X. L., Lin, Y. S., Wei, X. T. & Kniep, J. Ultrathin carbon molecular sieve membrane for propylene/propane separation. AIChE J. 62, 491–499 (2016).

    CAS  Google Scholar 

  52. Bhuwania, N. et al. Engineering substructure morphology of asymmetric carbon molecular sieve hollow fiber membranes. Carbon 76, 417–434 (2014).

    CAS  Google Scholar 

  53. Xu, L., Rungta, M. & Koros, W. J. Matrimid® derived carbon molecular sieve hollow fiber membranes for ethylene/ethane separation. J. Membr. Sci. 380, 138–147 (2011).

    CAS  Google Scholar 

  54. Louie, J. S., Pinnau, I. & Reinhard, M. Gas and liquid permeation properties of modified interfacial composite reverse osmosis membranes. J. Membr. Sci. 325, 793–800 (2008).

    CAS  Google Scholar 

  55. Ma, C. H. & Koros, W. J. Estercrosslinkable composite hollow fiber membranes for CO2 removal from natural gas. Ind. Eng. Chem. Res. 52, 10495–10505 (2013).

    CAS  Google Scholar 

  56. Vrijenhoek, E. M., Hong, S. & Elimelech, M. Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes. J. Membr. Sci. 188, 115–128 (2001).

    CAS  Google Scholar 

  57. Lisitsin, D., Hasson, D. & Semiat, R. Critical flux detection in a silica scaling RO system. Desalination 186, 311–318 (2005).

    CAS  Google Scholar 

  58. Bacchin, P., Aimar, P. & Field, R. W. Critical and sustainable fluxes: theory, experiments and applications. J. Membr. Sci. 281, 42–69 (2006).

    CAS  Google Scholar 

  59. Greenlee, L. F., Lawler, D. F., Freeman, B. D., Marrot, B. & Moulin, P. Reverse osmosis desalination: water sources, technology, and today's challenges. Water Res. 43, 2317–2348 (2009).

    CAS  Google Scholar 

  60. Everett, D. H. Thermodynamics of interfaces: an appreciation of the work of Géza Schay. Colloids Surf. A 71, 205–217 (1993).

    CAS  Google Scholar 

  61. Elimelech, M., Zhu, X. H., Childress, A. E. & Hong, S. K. Role of membrane surface morphology in colloidal fouling of cellulose acetate and composite aromatic polyamide reverse osmosis membranes. J. Membr. Sci. 127, 101–109 (1997).

    CAS  Google Scholar 

  62. Schwinge, J., Neal, P. R., Wiley, D. E., Fletcher, D. F. & Fane, A. G. Spiral wound modules and spacers: review and analysis. J. Membr. Sci. 242, 129–153 (2004).

    CAS  Google Scholar 

  63. Ning, R. Y., Troyer, T. L. & Tominello, R. S. Chemical control of colloidal fouling of reverse osmosis systems. Desalination 172, 1–6 (2005).

    CAS  Google Scholar 

  64. Herzberg, M. & Elimelech, M. Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure. J. Membr. Sci. 295, 11–20 (2007).

    CAS  Google Scholar 

  65. Bowen, T. C., Noble, R. D. & Falconer, J. L. Fundamentals and applications of pervaporation through zeolite membranes. J. Membr. Sci. 245, 1–33 (2004).

    CAS  Google Scholar 

  66. Liu, R., Qiao, X. & Chung, T.S. The development of high performance P84 co-polyimide hollow fibers for pervaporation dehydration of isopropanol. Chem. Eng. Sci. 60, 6674–6686 (2005).

    CAS  Google Scholar 

  67. Okamoto, K.-i., Kita, H. & Horii, K. Zeolite NaA membrane: preparation, single-gas permeation, and pervaporation and vapor permeation of water/organic liquid mixtures. Ind. Eng. Chem. Res. 40, 163–175 (2001).

    CAS  Google Scholar 

  68. Morigami, Y., Kondo, M., Abe, J., Kita, H. & Okamoto, K. The first large-scale pervaporation plant using tubular-type module with zeolite NaA membrane. Sep. Purif. Technol. 25, 251–260 (2001).

    CAS  Google Scholar 

  69. Gallego-Lizon, T., Edwards, E., Lobiundo, G. & Freitas dos Santos, L. Dehydration of water/t-butanol mixtures by pervaporation: comparative study of commercially available polymeric, microporous silica and zeolite membranes. J. Membr. Sci. 197, 309–319 (2002).

    CAS  Google Scholar 

  70. Chaudry, M. A. Water and ions transport mechanism in hyperfiltration with symmetric cellulose acetate membranes. J. Membr. Sci. 206, 319–332 (2002).

    CAS  Google Scholar 

  71. Marchetti, P., Jimenez Solomon, M. F., Szekely, G. & Livingston, A. G. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114, 10735–10806 (2014).

    CAS  Google Scholar 

  72. Cath, T. Y., Childress, A. E. & Elimelech, M. Forward osmosis: principles, applications, and recent developments. J. Membr. Sci. 281, 70–87 (2006).

    CAS  Google Scholar 

  73. Bui, N. N., Lind, M. L., Hoek, E. M. V. & McCutcheon, J. R. Electrospun nanofiber supported thin film composite membranes for engineered osmosis. J. Membr. Sci. 385, 10–19 (2011).

    Google Scholar 

  74. Shaffer, D. L., Werber, J. R., Jaramillo, H., Lin, S. H. & Elimelech, M. Forward osmosis: where are we now? Desalination 356, 271–284 (2015).

    CAS  Google Scholar 

  75. Jin, Y. & Su, Z. H. Effects of polymerization conditions on hydrophilic groups in aromatic polyamide thin films. J. Membr. Sci. 330, 175–179 (2009).

    CAS  Google Scholar 

  76. Zhao, L. & Ho, W. S. W. Novel reverse osmosis membranes incorporated with a hydrophilic additive for seawater desalination. J. Membr. Sci. 455, 44–54 (2014).

    CAS  Google Scholar 

  77. Karan, S., Jiang, Z. & Livingston, A. G. Sub-10 nm polyamide nanofilms with ultrafast solvent transport for molecular separation. Science 348, 1347–1351 (2015).

    CAS  Google Scholar 

  78. Cadotte, J. E. Reverse osmosis membrane. US patent 4,259,183 (1981).

  79. Geise, G. M. et al. Water purification by membranes: the role of polymer science. J. Polym. Sci. B 48, 1685–1718 (2010).

    CAS  Google Scholar 

  80. Jeong, B.H. et al. Interfacial polymerization of thin film nanocomposites: a new concept for reverse osmosis membranes. J. Membr. Sci. 294, 1–7 (2007).

    CAS  Google Scholar 

  81. Lind, M. L., Eumine Suk, D., Nguyen, T.V. & Hoek, E. M. V. Tailoring the structure of thin film nanocomposite membranes to achieve seawater RO membrane performance. Environ. Sci. Technol. 44, 8230–8235 (2010).

    CAS  Google Scholar 

  82. Wang, J. W. et al. A critical review of transport through osmotic membranes. J. Membr. Sci. 454, 516–537 (2014).

    CAS  Google Scholar 

  83. Rana, D. & Matsuura, T. Surface modifications for antifouling membranes. Chem. Rev. 110, 2448–2471 (2010).

    CAS  Google Scholar 

  84. Cohen-Tanugi, D., McGovern, R. K., Dave, S. H., Lienhard, J. H. & Grossman, J. C. Quantifying the potential of ultra-permeable membranes for water desalination. Energy Environ. Sci. 7, 1134–1141 (2014).

    CAS  Google Scholar 

  85. Shrivastava, A., Rosenberg, S. & Peery, M. Energy efficiency breakdown of reverse osmosis and its implications on future innovation roadmap for desalination. Desalination 368, 181–192 (2015).

    CAS  Google Scholar 

  86. Gregory, K. B., Vidic, R. D. & Dzombak, D. A. Water management challenges associated with the production of shale gas by hydraulic fracturing. Elements 7, 181–186 (2011).

    Google Scholar 

  87. Kim, I.C. & Lee, K.H. Preparation of interfacially synthesized and silicone-coated composite polyamide nanofiltration membranes with high performance. Ind. Eng. Chem. Res. 41, 5523–5528 (2002).

    CAS  Google Scholar 

  88. Jimenez Solomon, M. F., Bhole, Y. & Livingston, A. G. High flux hydrophobic membranes for organic solvent nanofiltration (OSN)—interfacial polymerization, surface modification and solvent activation. J. Membr. Sci. 434, 193–203 (2013).

    CAS  Google Scholar 

  89. Jimenez-Solomon, M. F., Song, Q., Jelfs, K. E., Munoz-Ibanez, M. & Livingston, A. G. Polymer nanofilms with enhanced microporosity by interfacial polymerization. Nat. Mater. 15, 760–767 (2016).

    CAS  Google Scholar 

  90. Koh, D.Y., McCool, B. A., Deckman, H. W. & Lively, R. P. Reverse osmosis molecular differentiation of organic liquids using carbon molecular sieve membranes. Science 353, 804–807 (2016).

    CAS  Google Scholar 

  91. Jenkins, G. M. & Kawamura, K. Polymeric Carbons: Carbon Fibre, Glass and Char (Cambridge Univ. Press, 1976).

    Google Scholar 

  92. Qiu, W., Zhang, K., Li, F. S., Zhang, K. & Koros, W. J. Gas separation performance of carbon molecular sieve membranes based on 6FDA-mPDA/DABA (3:2) polyimide. ChemSusChem 7, 1186–1194 (2014).

    CAS  Google Scholar 

  93. Carruthers, S. B., Ramos, G. L. & Koros, W. J. Morphology of integral-skin layers in hollow-fiber gas-separation membranes. J. Appl. Polym. Sci. 90, 399–411 (2003).

    CAS  Google Scholar 

  94. Xie, W. et al. Polyamide interfacial composite membranes prepared from m-phenylene diamine, trimesoyl chloride and a new disulfonated diamine. J. Membr. Sci. 403, 152–161 (2012).

    Google Scholar 

Download references

Acknowledgements

W.J.K. acknowledges financial support from the Office of Basic Energy Science of the US Department of Energy (grant DE-FG02-04ER15510). Valuable inputs on the manuscript by G. B. Wenz are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William J. Koros.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Koros, W., Zhang, C. Materials for next-generation molecularly selective synthetic membranes. Nature Mater 16, 289–297 (2017). https://doi.org/10.1038/nmat4805

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4805

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing