Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries

A Corrigendum to this article was published on 22 July 2011

This article has been updated

Abstract

The prohibitive cost and scarcity of the noble-metal catalysts needed for catalysing the oxygen reduction reaction (ORR) in fuel cells and metal–air batteries limit the commercialization of these clean-energy technologies. Identifying a catalyst design principle that links material properties to the catalytic activity can accelerate the search for highly active and abundant transition-metal-oxide catalysts to replace platinum. Here, we demonstrate that the ORR activity for oxide catalysts primarily correlates to σ*-orbital (eg) occupation and the extent of B-site transition-metal–oxygen covalency, which serves as a secondary activity descriptor. Our findings reflect the critical influences of the σ* orbital and metal–oxygen covalency on the competition between O22–/OH displacement and OH regeneration on surface transition-metal ions as the rate-limiting steps of the ORR, and thus highlight the importance of electronic structure in controlling oxide catalytic activity.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: ORR activity of perovskite transition-metal-oxide catalysts.
Figure 2: Role of eg electron on ORR activity of perovskite oxides.
Figure 3: Proposed ORR mechanism on perovskite oxide catalysts30.
Figure 4: Role of B–O covalency on the ORR activity of perovskite oxides.

Change history

  • 17 June 2011

    In the version of this Article originally published online, the wrong descriptions for the colours of B and O atoms were given in the caption for Figure 2. This has now been corrected in all versions of the Article.

References

  1. Gasteiger, H. A. & Markovic, N. M. Just a dream-or future reality? Science 324, 48–49 (2009).

    CAS  Article  Google Scholar 

  2. Whitesides, G. M. & Crabtree, G. W. Don't forget long-term fundamental research in energy. Science 315, 796–798 (2007).

    CAS  Article  Google Scholar 

  3. Gray, H. B. Powering the planet with solar fuel. Nature Chem. 1, 7 (2009).

    CAS  Article  Google Scholar 

  4. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  Google Scholar 

  5. Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    CAS  Article  Google Scholar 

  6. Service, R. F. Transportation research hydrogen cars: fad or the future? Science 324, 1257–1259 (2009).

    CAS  Article  Google Scholar 

  7. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    CAS  Article  Google Scholar 

  8. Lu, Y. C. et al. Platinum–gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium–air batteries. J. Am. Chem. Soc. 132, 12170–12171 (2010).

    CAS  Article  Google Scholar 

  9. Norskov, J. K. et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode. J. Phys. Chem. B 108, 17886–17892 (2004).

    CAS  Article  Google Scholar 

  10. Stamenkovic, V. R. et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science 315, 493–497 (2007).

    CAS  Article  Google Scholar 

  11. Stamenkovic, V. R. et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure. Angew. Chem. Int. Ed. 45, 2897–2901 (2006).

    CAS  Article  Google Scholar 

  12. Lima, F. H. B. et al. Catalytic activity d-band center correlation for the O2 reduction reaction on platinum in alkaline solutions. J. Phys. Chem. C 111, 404–410 (2007).

    CAS  Article  Google Scholar 

  13. Greeley, J. et al. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nature Chem. 1, 552–556 (2009).

    CAS  Article  Google Scholar 

  14. Meadowcroft, D. B. Low-cost oxygen electrode material. Nature 226, 847–848 (1970).

    CAS  Article  Google Scholar 

  15. Suntivich, J., Gasteiger, H. A., Yabuuchi, N. & Shao-horn, Y. Electrocatalytic measurement methodology of oxide catalysts using a thin-film rotating disk electrode. J. Electrochem. Soc. 157, B1263–B1268 (2010).

    CAS  Article  Google Scholar 

  16. Bockris, J. O. & Otagawa, T. The electrocatalysis of oxygen evolution on perovskites. J. Electrochem. Soc. 131, 290–302 (1984).

    CAS  Article  Google Scholar 

  17. Zou, Z. G., Ye, J. H., Sayama, K. & Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 414, 625–627 (2001).

    CAS  Article  Google Scholar 

  18. Matsumoto, Y., Yoneyama, H. & Tamura, H. Influence of nature of conduction-band of transition-metal oxides on catalytic activity for oxygen reduction. J. Electroanal. Chem. 83, 237–243 (1977).

    CAS  Article  Google Scholar 

  19. Matsumoto, Y., Yoneyama, H. & Tamura, H., Catalytic activity for electrochemical reduction of oxygen of lanthanum nickel-oxide and related oxides. J. Electroanal. Chem. 79, 319–326 (1977).

    CAS  Article  Google Scholar 

  20. Matsumoto, Y., Yoneyama, H. & Tamura, H. A new catalyst for cathodic reduction of oxygen: lanthanum nickel oxide. Chem. Lett. 661–662 (1975).

  21. Bockris, J. O. & Otagawa, T. Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 87, 2960–2971 (1983).

    CAS  Article  Google Scholar 

  22. Morin, F. J. & Wolfram, T. Surface states and catalysis on d-band perovskites. Phys. Rev. Lett. 30, 1214–1217 (1973).

    CAS  Article  Google Scholar 

  23. Goodenough, J. B. & Zhou, J. S. in Localized to Itinerant Electronic Transition in Perovskite Oxides Vol. 98, 17–113 (Springer-Verlag Berlin, 2001).

    CAS  Article  Google Scholar 

  24. Yan, J. Q., Zhou, J. S. & Goodenough, J. B. Ferromagnetism in LaCoO3 . Phys. Rev. B 70, 014402 (2004).

    Article  Google Scholar 

  25. Markovic, N. M., Gasteiger, H. A. & Ross, P. N. Oxygen reduction on platinum low-index single-crystal surfaces in alkaline solution: rotating ring disk (Pt(hkl)) studies. J. Phys. Chem. 100, 6715–6721 (1996).

    Article  Google Scholar 

  26. Fernandez, E. M. et al. Scaling relationships for adsorption energies on transition metal oxide, sulfide, and nitride surfaces. Angew. Chem. Int. Ed. 47, 4683–4686 (2008).

    CAS  Article  Google Scholar 

  27. Tejuca, L. G., Fierro, J. L. G. & Tascon, J. M. D. Structure and reactivity of perovskite-type oxides. Adv. Catal. 36, 237–328 (1989).

    CAS  Google Scholar 

  28. Dowden, D. A. Crystal and ligand field models of solid catalysts. Catal. Rev. 5, 1–32 (1971).

    CAS  Article  Google Scholar 

  29. Yokoi, Y. & Uchida, H. Catalytic activity of perovskite-type oxide catalysts for direct decomposition of NO: correlation between cluster model calculations and temperature-programmed desorption experiments. Catal. Today 42, 167–174 (1998).

    CAS  Article  Google Scholar 

  30. Goodenough, J. B. & Cushing, B. L., in Handbook of Fuel Cells — Fundamentals, Technology and Applications Vol. 2, 520–533 (eds Vielstich, W., Gasteiger, H. A. & Yokokawa, H. (Wiley, 2003).

  31. Abbate, M. et al. Probing depth of surface X-ray absorption spectroscopy measured in total electron-yield-mode. Surf. Interface Anal. 18, 65–69 (1992).

    CAS  Article  Google Scholar 

  32. Abbate, M. et al. Controlled-valence properties of La1–xSrxFeO3 and La1–xSrxMnO3 studied by soft-X-ray absorption-spectroscopy. Phys. Rev. B 46, 4511–4519 (1992).

    CAS  Article  Google Scholar 

  33. Rossmeisl, J., Qu, Z. W., Zhu, H., Kroes, G. J. & Norskov, J. K. Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83–89 (2007).

    CAS  Article  Google Scholar 

  34. Gasteiger, H. A., Kocha, S. S., Sompalli, B. & Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B 56, 9–35 (2005).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Toyota Motor Company and by the DOE Hydrogen Initiative programme (award no. DE-FG02-05ER15728). The research made use of the Shared Experimental Facilities supported by the MRSEC Program of the National Science Foundation (award no. DMR 08-019762). J.S. was supported in part by the Chesonis Foundation Fellowship. J.B.G was supported by the Robert A. Welch Foundation (Houston, Texas). The authors would like to thank A. Mansour for his help with X-ray absorption spectroscopy. The National Synchrotron Light Source is supported by the US Department of Energy, Division of Material Sciences and Division of Chemical Sciences (contract no. DE-AC02-98CH10886). The beamline X11 is supported by the Office of Naval Research and contributions from Participating Research Team (PRT) members.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.H. proposed the concept. J.S., H.A.G. and Y.S.H. designed the experiments. J.S., N.Y. and H.N. carried out the experiments. J.S., H.A.G., J.B.G. and Y.S.H. performed the analysis and wrote the manuscript.

Corresponding authors

Correspondence to Hubert A. Gasteiger or Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 975 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Suntivich, J., Gasteiger, H., Yabuuchi, N. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nature Chem 3, 546–550 (2011). https://doi.org/10.1038/nchem.1069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchem.1069

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing