Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Damming the rivers of the Amazon basin

Abstract

More than a hundred hydropower dams have already been built in the Amazon basin and numerous proposals for further dam constructions are under consideration. The accumulated negative environmental effects of existing dams and proposed dams, if constructed, will trigger massive hydrophysical and biotic disturbances that will affect the Amazon basin’s floodplains, estuary and sediment plume. We introduce a Dam Environmental Vulnerability Index to quantify the current and potential impacts of dams in the basin. The scale of foreseeable environmental degradation indicates the need for collective action among nations and states to avoid cumulative, far-reaching impacts. We suggest institutional innovations to assess and avoid the likely impoverishment of Amazon rivers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The Amazon’s 19 sub-basins: geologic–physiographic domains, sediment fluxes, channel migration rates and dams.
Figure 2: Vulnerability indices of sub-basins in the Amazon for existing, under construction, and planned dams.
Figure 3: Changes in surface suspended sediment concentration in the Madeira river downstream of the Santo Antônio dam (8° 48′ 06′′ S, 63° 57′ 03′′ W) for pre-and post-dam construction periods.

References

  1. 1

    Castello, L. & Macedo, M. N. Large-scale degradation of Amazonian freshwater ecosystems. Glob. Change Biol. 22, 990–1007 (2015)

    ADS  Article  Google Scholar 

  2. 2

    Winemiller, K. et al. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129 (2016)

    ADS  CAS  Article  Google Scholar 

  3. 3

    Davidson, E. A. et al. The Amazon basin in transition. Nature 481, 321–328 (2012)

    ADS  CAS  Article  Google Scholar 

  4. 4

    Fearnside, P. M. Emissions from tropical hydropower and the IPCC. Environ. Sci. Policy 50, 225–239 (2015)

    Article  Google Scholar 

  5. 5

    Latrubesse, E. M. Patterns of anabranching channels: the ultimate end-member adjustment of mega rivers. Geomorphology 101, 130–145 (2008)

    ADS  Article  Google Scholar 

  6. 6

    Syvitski, J. P., Vörösmarty, C. J., Kettner, A. J. & Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 308, 376–380 (2005)

    ADS  CAS  Article  Google Scholar 

  7. 7

    Nilsson, C., Reidy, C. A., Dynesius, M. & Revenga, C. Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408 (2005)

    ADS  CAS  Article  Google Scholar 

  8. 8

    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10, 015001 (2015)

    ADS  Article  Google Scholar 

  9. 9

    The World Commission on Dams. Dams and Development: A New Framework for Decision-making: the Report of the World Commission on Dams. https://www.internationalrivers.org/sites/default/files/attached-files/world_commission_on_dams_final_report.pdf (Earthscan, 2000)

  10. 10

    Scudder, T. T. The Future of Large Dams: Dealing with Social, Environmental, Institutional and Political Costs (Taylor and Francis, 2012)

  11. 11

    Junk, W. J. The Central Amazon Floodplain: Ecology of a Pulsing System Vol. 126 (Springer Science and Business Media, 2013)

  12. 12

    Filizola, N. & Guyot, J. L. Suspended sediment yields in the Amazon basin: an assessment using the Brazilian national data set. Hydrol. Processes 23, 3207–3215 (2009)

    ADS  Article  Google Scholar 

  13. 13

    Meade, R. H., Dunne, T., Richey, J. E., Santos, U. M. & Salati, E. Storage and remobilization of suspended sediment in the lower Amazon River of Brazil. Science 228, 488–490 (1985)

    ADS  CAS  Article  Google Scholar 

  14. 14

    Latrubesse, E. M., Stevaux, J. C. & Sinha, R. Tropical rivers. Geomorphology 70, 187–206 (2005)

    ADS  Article  Google Scholar 

  15. 15

    Park, E. & Latrubesse, E. M. Surface water types and sediment distribution patterns at the confluence of mega rivers: the Solimões-Amazon and Negro Rivers junction. Wat. Resour. Res. 51, 6197–6213 (2015)

    ADS  Article  Google Scholar 

  16. 16

    Salo, J . et al. River dynamics and the diversity of Amazon lowland forest. Nature 322, 254–258 (1986).This paper shows that large-scale natural forest disturbance and primary forest succession in the Amazon lowlands are caused by fluvial lateral erosion and channel changes

    ADS  Article  Google Scholar 

  17. 17

    Junk, W. J., Bayley, P. B. & Sparks, R. E. The flood pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aquat. Sci. 106, 110–127 (1989).This paper shows that in flood-pulsing systems of large river-floodplains, habitat diversity is especially wide-ranging because the duration, amplitude, frequency and predictability of flooding, and the nutrient status of the floodplain, depend on the amount and quality of dissolved and suspended solids provided by the pulse

    Google Scholar 

  18. 18

    Dunne, T., Mertes, L. A. K., Meade, R. H., Richey, J. E. & Forsberg, B. R. Exchanges of sediment between the flood plain and channel of the Amazon River in Brazil. Geol. Soc. Am. Bull. 110, 0450 (1998).This paper shows that exchanges between channel and floodplain along the Amazon river exceed the annual flux of sediments at Óbidos, and hundreds of millions of tons of sediments are stored in the floodplain

    ADS  Article  Google Scholar 

  19. 19

    Stallard, R. & Edmond, J. Geochemistry of the Amazon: 2. The influence of geology and weathering environment on the dissolved load. J. Geophys. Res. Oceans 88, 9671–9688 (1983)

    ADS  CAS  Article  Google Scholar 

  20. 20

    Latrubesse, E. M. & Restrepo, J. D. Sediment yield along the Andes: continental budget, regional variations, and comparisons with other basins from orogenic mountain belts. Geomorphology 216, 225–233 (2014)

    ADS  Article  Google Scholar 

  21. 21

    Vale, M. M. Cohn-Haft, M., Bergen, S. & Pimm, S. L. Effects of future infrastructure development on threat status and occurrence of Amazonian birds. Conserv. Biol. 22, 1006–1015 (2008)

    Article  Google Scholar 

  22. 22

    Queiroz, L. J. et al. Peixes do Rio Madeira—Y-Cuyari Pirá-Ketá 1163 (Editora Dialeto, 2013)

  23. 23

    Constantine, J. A., Dunne, T., Ahmed, J., Legleiter, C. & Lazarus, E. D. Sediment supply as a driver of river meandering and floodplain evolution in the Amazon Basin. Nat. Geosci. 7, 899–903 (2014).This paper shows that rivers with high sediment loads experience higher annual migration rates than those with lower sediment loads

    ADS  CAS  Article  Google Scholar 

  24. 24

    Latrubesse, E., Amsler, M., De Morais, R. & Aquino, S. The geomorphologic response of a large pristine alluvial river to tremendous deforestation in the South American tropics: the case of the Araguaia River. Geomorphology 113, 239–252 (2009)

    ADS  Article  Google Scholar 

  25. 25

    Portaria do Ministério do Meio Ambiente. Nº 445 de 17 de Dezembro de 2014. Lista Nacional Oficial de Espécies da Fauna Ameaçadas de Extinção—Peixes e Invertebrados Aquáticos. http://licenciamento.ibama.gov.br/Hidreletricas/São%20Luiz%20do%20Tapajos/EIA_RIMA/ (Diário Oficial da União, Ministério do Meio Ambiente, Brazil, 2014)

  26. 26

    Worley Parsons CNEC Engenharia SA. http://licenciamento.ibama.gov.br/Hidreletricas/São%20Luiz%20do%20Tapajos/EIA_RIMA/Volume%2003%20-%20Cap_7.2/Volume_3_Cap_7.2.pdf Environmental Impact Study, Hydroelectric Development Sao Luiz Do Tapajós (Consórcio Nacional dos Engenheiros Consultores, 2014)

  27. 27

    Guyot, J. L., Filizola, N., Quintanilla, J. & Cortez, J. in Erosion and Sediment Yield: Global and Regional Perspectives (eds Walling, D. E & Webb, B. ) 55–63 (IAHS Publication, 1996)

  28. 28

    Fearnside, P. Decision-making on Amazon dams: politics trumps uncertainty in the Madeira River sediments controversy. Water Altern. 6, 313–325 (2013)

    Google Scholar 

  29. 29

    Molina Carpio, J. Análisis de los Estudios de Impacto Ambiental del Complejo Hidroeléctrico del Río Madera. Report to International Rivers Network, Berkeley, Califórnia, Estados Unidos de América (EUA) 2 http://philip.inpa.gov.br/publ_livres/Dossie/Mad/Outros%20documentos/Molina_analisis_madera_.pdf (2006)

  30. 30

    Hess, L. L. et al. Wetlands of the lowland Amazon basin: extent, vegetative cover, and dual-season inundated area as mapped with JERS-1 Synthetic Aperture Radar. Wetlands 35, 745–756 (2015)

    Article  Google Scholar 

  31. 31

    Park, E. & Latrubesse, E. M. Modeling suspended sediment distribution patterns of the Amazon River using MODIS data. Remote Sens. Environ. 147, 232–242 (2014)

    ADS  Article  Google Scholar 

  32. 32

    United Nations Environment Programme (UNEP). Transboundary River Basins: Status and Trends. Summary for Policy Makers. 342, http://www.geftwap.org/publications/river-basins-spm (UNEP-DHI, 2016)

  33. 33

    Nittrouer, C. A., Kuehl, S. A., Sternberg, R. W., Figueiredo, A. G. & Faria, L. E. An introduction to the geological significance of sediment transport and accumulation on the Amazon continental shelf. Mar. Geol. 125, 177–192 (1995)

    ADS  Article  Google Scholar 

  34. 34

    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, e1501252 (2016)

    ADS  Article  Google Scholar 

  35. 35

    Vizy, E. K. & Cook, K. H. Influence of the Amazon/Orinoco Plume on the summertime Atlantic climate. J. Geophys. Res. Atmos. 115, D21112 (2010)

    ADS  Article  Google Scholar 

  36. 36

    Ansar, A ., Flyvbjerg, B ., Budzier, A. & Lunn, D. Should we build more large dams? The actual costs of hydropower megaproject development. Energy Policy 69, 43–56 (2014).This paper shows that in most countries large hydropower dams will be too costly in absolute terms and take too long to build to deliver a positive risk-adjusted return

    Article  Google Scholar 

  37. 37

    Schaeffer, R., Szklo, A., De Lucena, A. F. P., Soria, R. & Chavez-Rodriguez, M. The vulnerable Amazon: the impact of climate change on the untapped potential of hydropower systems. IEEE Power Energy Mag. 11, 22–31 (2013)

    Article  Google Scholar 

  38. 38

    Stickler, C. M. et al. Dependence of hydropower energy generation on forests in the Amazon Basin at local and regional scales. Proc. Natl Acad. Sci. USA 110, 9601–9606 (2013)

    ADS  CAS  Article  Google Scholar 

  39. 39

    Sovacool, B. K., Gilbert, A. & Nugent, D. Risk, innovation, electricity infrastructure and construction cost overruns: testing six hypotheses. Energy 74, 906–917 (2014)

    Article  Google Scholar 

  40. 40

    Stone, R. The legacy of the Three Gorges dam. Science 333, 817 (2011)

    ADS  Article  Google Scholar 

  41. 41

    Empresa de Pesquisa Energetica de Brasil (EPE). Demanda de Energia, 2050. Nota Técnica Dea 13/14 http://www.epe.gov.br/Estudos/Documents/DEA%2013-14%20Demanda%20de%20Energia%202050.pdf (EPE, 2014)

  42. 42

    Berardi, U. Building energy consumption in US, EU, and BRIC countries. Procedia Eng. 118, 128–136 (2015)

    Article  Google Scholar 

  43. 43

    Prado, F. A. et al. How much is enough? An integrated examination of energy security, economic growth and climate change related to hydropower expansion in Brazil. Renew. Sustain. Energy Rev. 53, 1132–1136 (2016)

    Article  Google Scholar 

  44. 44

    Secretaria de Asuntos Estratégicos (SAE). Recursos Hídricos Fronteiriços e Transfronteiriços do Brasil. 144, http://estatico.cnpq.br/portal/premios/2013/pjc/imagens/noticias/publicacao_agua_sae.pdf (SAE, 2013)

  45. 45

    Secretaria de Estado de Meio Ambiente (SEMA). Plano Estadual de Recursos Hídricos do Acre. http://www.agencia.ac.gov.br/wp-content/uploads/2017/03/PLERH_interativo_final1.pdf 243 (SEMA, 2012)

  46. 46

    Little, P. E. Mega-Development Projects in Amazonia: A Geopolitical and Socioenvironmental Primer. 90, http://www.dar.org.pe/archivos/publicacion/145_megaproyectos_ingles_final.pdf (Red Jurídica Amazónica-RAMA, 2014)

  47. 47

    Flyvbjerg, B. What you should know about megaprojects and why: an overview. Proj. Manage. J. 45, 6–19 (2014)

    Article  Google Scholar 

  48. 48

    Ansar, A ., Flyvbjerg, B ., Budzier, A. & Lunn, D. Big is Fragile: An Attempt at Theorizing Scale (Oxford University Press, 2016)

  49. 49

    Malagueta, D. et al. Potential and impacts of Concentrated Solar Power (CSP) integration in the Brazilian electric power system. Renew. Energy 68, 223–235 (2014)

    Article  Google Scholar 

  50. 50

    World Wide Fund for Nature (WWF). Alem das grandes hidreletricas: políticas para fontes renovaveis de energia no Brasil. http://d3nehc6yl9qzo4.cloudfront.net/downloads/alem_de_grandes_hidreletricas_sumario_para_tomadores_de_decisao.pdf (WWF, 2012)

  51. 51

    Filizola, N. et al. Preliminary Analysis of Potential for River Hydrokinetic Energy Technologies in the Amazon Basin. IDB Technical Note (Energy Division); IDB-TN-891, https://publications.iadb.org/handle/11319/7292 (2015)

  52. 52

    Pereira, M. G., Camacho, C. F., Freitas, M. A. V. & Da Silva, N. F. The renewable energy market in Brazil: current status and potential. Renew. Sustain. Energy Rev. 16, 3786–3802 (2012)

    Article  Google Scholar 

  53. 53

    Rey, O. Um olhar para as grandes perdas de energia no sistema de transmissão elétrico brasileiro. O Setor Elétrico Brasileiro e a Sustentabilidade no Século. Vol. 21, Ch. 3.4, https://www.internationalrivers.org/sites/default/files/attached-files/setor_eletrico_desafios-oportunidades_2_edicao_nov2012.pdf (International Rivers, 2012)

  54. 54

    Empresa de Pesquisa energética (EPE). Repotentiação e Modernização de Usinas Hidrelétricas. http://www.epe.gov.br/mercado/Documents/S%C3%A9rie%20Estudos%20de%20Energia/20081201_1.pdf (EPE, 2008)

  55. 55

    Meisen, P. & Krumpel, S. Renewable Energy Potential of Latin America. http://www.geni.org/globalenergy/research/renewable-energy-potential-of-latin-america/Potential%20of%20Renewables%20in%20Latin%20America-edited-12-16%20_Letter_.pdf (Global Energy Network Institute, 2009)

  56. 56

    International Renewable Energy Agency (IRENA). Peru Renewables Readiness Assessment 2014. http://www.irena.org/DocumentDownloads/Publications/RRA_Peru.pdf (IRENA, 2014)

  57. 57

    Nobre, C. A., Marengo, J. A. & Artaxo, P. in Amazonia and Global Change (eds Keller, M., Bustamante, M., Gash, J. & Dias, P. ) 145–147 (2009)

  58. 58

    Ritter, C. D. et al. Environmental impact assessment in Brazilian Amazonia: challenges and prospects to assess biodiversity. Biol. Conserv. 206, 161–168 (2017)

    Article  Google Scholar 

  59. 59

    Ferreira, J. et al. Brazil’s environmental leadership at risk. Science 346, 706–707 (2014)

    ADS  CAS  Article  Google Scholar 

  60. 60

    World Database on Protected Areas (WDPA). World Conservation Union and UNEP-World Conservation Monitoring Centre https://www.iucn.org/theme/protected-areas/our-work/world-database-protected-areas (WDPA, 2004)

  61. 61

    Fearnside, P. M. Brazilian politics threaten environmental policies. Science 353, 746–748 (2016)

    ADS  CAS  Article  Google Scholar 

  62. 62

    Wade, L. Brazilian crisis threatens science and environment. Science 352, 1044 (2016)

    ADS  CAS  Article  Google Scholar 

  63. 63

    de Sousa, P. T., Jr, Piedade, M. T. F. & Candotti, E. Ecological oversight: Brazil’s forest code puts wetlands at risk. Nature 478, 458 (2011)

    ADS  CAS  Article  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NSF grants (FESD-1338694, EAR-1147954 and DDRI-1558446), a NASA grant (NAG5-6120), a National Geographic Society-Research and Exploration Grant (8855-10), LLILAS-Mellon, the Brazilian Council for Scientific and Technological Development-CNPq and the CAPES Foundation.

Author information

Affiliations

Authors

Contributions

E.M.L. initiated this research, conceived the multidisciplinary methodology, and coordinated the manuscript. All authors extensively contributed to the writing and analysis of results. E.M.L., E.P. and C.W. developed the database on dams. E.Y.A., C.W. and E.P. performed Geographic Information System analysis. E.P. performed remote sensing work.

Corresponding author

Correspondence to Edgardo M. Latrubesse.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reviewer Information

Nature thanks J. Best, B. Sovacool, H. ter Steege and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

This file contains Supplementary Text, Supplementary Figures 1-3, Supplementary Tables 1-2 and Supplementary references. (PDF 2391 kb)

Supplementary Data

This file contains the source data for Supplementary Figure 2. (XLSX 16 kb)

PowerPoint slides

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Latrubesse, E., Arima, E., Dunne, T. et al. Damming the rivers of the Amazon basin. Nature 546, 363–369 (2017). https://doi.org/10.1038/nature22333

Download citation

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links