Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period


During the neonatal period, activity-dependent neural-circuit remodelling coincides with growth and refinement of the cerebral microvasculature1,2. Whether neural activity also influences the patterning of the vascular bed is not known. Here we show in neonatal mice, that neither reduction of sensory input through whisker trimming nor moderately increased activity by environmental enrichment affects cortical microvascular development. Unexpectedly, chronic stimulation by repetitive sounds, whisker deflection or motor activity led to a near arrest of angiogenesis in barrel, auditory and motor cortices, respectively. Chemically induced seizures also caused robust reductions in microvascular density. However, altering neural activity in adult mice did not affect the vasculature. Histological analysis and time-lapse in vivo two-photon microscopy revealed that hyperactivity did not lead to cell death or pruning of existing vessels but rather to reduced endothelial proliferation and vessel sprouting. This anti-angiogenic effect was prevented by administration of the nitric oxide synthase (NOS) inhibitor L-NAME and in mice with neuronal and inducible NOS deficiency, suggesting that excessive nitric oxide released from hyperactive interneurons and glia inhibited vessel growth. Vascular deficits persisted long after cessation of hyperstimulation, providing evidence for a critical period after which proper microvascular patterning cannot be re-established. Reduced microvascular density diminished the ability of the brain to compensate for hypoxic challenges, leading to dendritic spine loss in regions distant from capillaries. Therefore, excessive sensorimotor stimulation and repetitive neural activation during early childhood may cause lifelong deficits in microvascular reserve, which could have important consequences for brain development, function and pathology.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Increased levels of neural activity during postnatal development lead to reduced microvascular density.
Figure 2: Neural hyperactivity reduces endothelial proliferation and new vessel formations in the neonatal cortex.
Figure 3: Inhibition of neuronal and inducible nitric oxide prevents vascular growth arrest in response to activity.
Figure 4: Activity-mediated microvascular deficits are long-lasting and affect brain oxygenation and dendritic spine stability in areas distant from capillaries.


  1. 1

    Harb, R., Whiteus, C., Freitas, C. & Grutzendler, J. In vivo imaging of cerebral microvascular plasticity from birth to death. J. Cereb. Blood Flow Metab. 33, 146–156 (2013)

    CAS  Article  Google Scholar 

  2. 2

    Spitzer, N. C. Electrical activity in early neuronal development. Nature 444, 707–712 (2006)

    CAS  ADS  Article  Google Scholar 

  3. 3

    Lam, C. K., Yoo, T., Hiner, B., Liu, Z. & Grutzendler, J. Embolus extravasation is an alternative mechanism for cerebral microvascular recanalization. Nature 465, 478–482 (2010)

    CAS  ADS  Article  Google Scholar 

  4. 4

    Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005)

    CAS  ADS  Article  Google Scholar 

  5. 5

    Dunning, H. S. & Wolff, H. G. The relative vascularity of various parts of the central and peripheral nervous system of the cat and its relation to function. J. Comp. Neurol. 67, 433–450 (1937)

    Article  Google Scholar 

  6. 6

    Black, J. E., Isaacs, K. R., Anderson, B. J., Alcantara, A. A. & Greenough, W. T. Learning causes synaptogenesis, whereas motor activity causes angiogenesis, in cerebellar cortex of adult rats. Proc. Natl Acad. Sci. USA 87, 5568–5572 (1990)

    CAS  ADS  Article  Google Scholar 

  7. 7

    Wei, L., Erinjeri, J. P., Rovainen, C. M. & Woolsey, T. A. Collateral growth and angiogenesis around cortical stroke. Stroke 32, 2179–2184 (2001)

    CAS  Article  Google Scholar 

  8. 8

    Whitaker, V. R., Cui, L., Miller, S., Yu, S. P. & Wei, L. Whisker stimulation enhances angiogenesis in the barrel cortex following focal ischemia in mice. J. Cereb. Blood Flow Metab. 27, 57–68 (2007)

    CAS  Article  Google Scholar 

  9. 9

    Rao, S. et al. A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494, 243–246 (2013)

    CAS  ADS  Article  Google Scholar 

  10. 10

    Vasudevan, A., Long, J. E., Crandall, J. E., Rubenstein, J. L. & Bhide, P. G. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nature Neurosci. 11, 429–439 (2008)

    CAS  Article  Google Scholar 

  11. 11

    Margolis, D. J. et al. Reorganization of cortical population activity imaged throughout long-term sensory deprivation. Nature Neurosci. 15, 1539–1546 (2012)

    CAS  Article  Google Scholar 

  12. 12

    Zuo, Y., Yang, G., Kwon, E. & Gan, W.-B. Long-term sensory deprivation prevents dendritic spine loss in primary somatosensory cortex. Nature 436, 261–265 (2005)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Crochet, S. & Petersen, C. C. H. Correlating whisker behavior with membrane potential in barrel cortex of awake mice. Nature Neurosci. 9, 608–610 (2006)

    CAS  Article  Google Scholar 

  14. 14

    Beloozerova, I. N., Sirota, M. G. & Swadlow, H. A. Activity of different classes of neurons of the motor cortex during locomotion. J. Neurosci. 23, 1087–1097 (2003)

    CAS  Article  Google Scholar 

  15. 15

    Rudic, R. D. et al. Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. J. Clin. Invest. 101, 731–736 (1998)

    CAS  Article  Google Scholar 

  16. 16

    Keilhoff, G. et al. Patterns of nitric oxide synthase at the messenger RNA and protein levels during early rat brain development. Neuroscience 75, 1193–1201 (1996)

    CAS  Article  Google Scholar 

  17. 17

    Buskila, Y. & Amitai, Y. Astrocytic iNOS-dependent enhancement of synaptic release in mouse neocortex. J. Neurophysiol. 103, 1322–1328 (2010)

    CAS  Article  Google Scholar 

  18. 18

    van den Tweel, E. R. W. et al. Expression of nitric oxide synthase isoforms and nitrotyrosine formation after hypoxia-ischemia in the neonatal rat brain. J. Neuroimmunol. 167, 64–71 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Ridnour, L. A. et al. Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc. Natl Acad. Sci. USA 102, 13147–13152 (2005)

    CAS  ADS  Article  Google Scholar 

  20. 20

    Heller, R., Polack, T., Gräbner, R. & Till, U. Nitric oxide inhibits proliferation of human endothelial cells via a mechanism independent of cGMP. Atherosclerosis 144, 49–57 (1999)

    CAS  Article  Google Scholar 

  21. 21

    Jones, M. K., Tsugawa, K., Tarnawski, A. S. & Baatar, D. Dual actions of nitric oxide on angiogenesis: possible roles of PKC, ERK, and AP-1. Biochem. Biophys. Res. Commun. 318, 520–528 (2004)

    CAS  Article  Google Scholar 

  22. 22

    Perrenoud, Q. et al. Characterization of type I and type II nNOS-expressing interneurons in the barrel cortex of mouse. Front. Neural Circuits 6, 36 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Kasischke, K. A. et al. Two-photon NADH imaging exposes boundaries of oxygen diffusion in cortical vascular supply regions. J. Cereb. Blood Flow Metab. 31, 68–81 (2011)

    CAS  Article  Google Scholar 

  24. 24

    Devor, A. et al. “Overshoot” of O2 is required to maintain baseline tissue oxygenation at locations distal to blood vessels. J. Neurosci. 31, 13676–13681 (2011)

    CAS  Article  Google Scholar 

  25. 25

    Chang, E. F. & Merzenich, M. M. Environmental noise retards auditory cortical development. Science 300, 498–502 (2003)

    CAS  ADS  Article  Google Scholar 

  26. 26

    Zhang, L. I., Bao, S. & Merzenich, M. M. Persistent and specific influences of early acoustic environments on primary auditory cortex. Nature Neurosci. 4, 1123–1130 (2001)

    CAS  Article  Google Scholar 

  27. 27

    Strata, F. et al. Perinatal anoxia degrades auditory system function in rats. Proc. Natl Acad. Sci. USA 102, 19156–19161 (2005)

    CAS  ADS  Article  Google Scholar 

  28. 28

    Sillanpää, M., Jalava, M., Kaleva, O. & Shinnar, S. Long-term prognosis of seizures with onset in childhood. N. Engl. J. Med. 338, 1715–1722 (1998)

    Article  Google Scholar 

  29. 29

    Committee. on Environmental Health Noise: a hazard for the fetus and newborn. Pediatrics 100, 724–727 (1997)

  30. 30

    Arida, R. M., Scorza, F. A., de Araujo Peres, C. & Cavalheiro, E. A. The course of untreated seizures in the pilocarpine model of epilepsy. Epilepsy Res. 34, 99–107 (1999)

    CAS  Article  Google Scholar 

  31. 31

    Wykes, R. C. et al. Optogenetic and potassium channel gene therapy in a rodent model of focal neocortical epilepsy. Sci. Transl. Med. 4, 151ra152 (2012)

    Article  Google Scholar 

  32. 32

    Sorrells, S. F., Caso, J. R., Munhoz, C. D. & Sapolsky, R. M. The stressed CNS: when glucocorticoids aggravate inflammation. Neuron 64, 33–39 (2009)

    CAS  Article  Google Scholar 

  33. 33

    Palmer, R. M., Ashton, D. S. & Moncada, S. Vascular endothelial cells synthesize nitric oxide from L-arginine. Nature 333, 664–666 (1988)

    CAS  ADS  Article  Google Scholar 

  34. 34

    Lefort, S., Tomm, C., Floyd Sarria, J.-C. & Petersen, C. C. H. The excitatory neuronal network of the C2 barrel column in mouse primary somatosensory cortex. Neuron 61, 301–316 (2009)

    CAS  Article  Google Scholar 

  35. 35

    Oviedo, H. V., Bureau, I., Svoboda, K. & Zador, A. M. The functional asymmetry of auditory cortex is reflected in the organization of local cortical circuits. Nature Neurosci. 13, 1413–1420 (2010)

    CAS  Article  Google Scholar 

  36. 36

    Saikali, S. et al. A three-dimensional digital segmented and deformable brain atlas of the domestic pig. J. Neurosci. Methods 192, 102–109 (2010)

    Article  Google Scholar 

Download references


The authors appreciate the expert advice of W. Sessa, M. Simons and F. Moraes. A. Schain helped with design of ImageJ macros and G. P. Flowers critically read the manuscript. This study was supported by the following Grants: R01AG027855 and R01HL106815 (J.G.); F31NS068041 (C.W.) and AHA# 10POST2570007 (C.F.).

Author information




C.W. and J.G. conceived the project, C.W., C.F. and J.G. designed the experiment, C.W. and C.F. carried out the experiment, C.W., C.F. and J.G. analysed the data, and C.W. and J.G. wrote the manuscript.

Corresponding author

Correspondence to Jaime Grutzendler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-12, Supplementary Discussion 1-2 and additional references. (PDF 20542 kb)

Co-label of NHS biotin and collagen IV in a 3-dimensional stack

Vessel stack of section co-labeled with both NHS-biotin intravascular dye (red) and collagen IV basement membrane antibody (green). Scale bar: 200 μm. (AVI 4085 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whiteus, C., Freitas, C. & Grutzendler, J. Perturbed neural activity disrupts cerebral angiogenesis during a postnatal critical period. Nature 505, 407–411 (2014).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links