Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cooperation between brain and islet in glucose homeostasis and diabetes



Although a prominent role for the brain in glucose homeostasis was proposed by scientists in the nineteenth century, research throughout most of the twentieth century focused on evidence that the function of pancreatic islets is both necessary and sufficient to explain glucose homeostasis, and that diabetes results from defects of insulin secretion, action or both. However, insulin-independent mechanisms, referred to as ‘glucose effectiveness’, account for roughly 50% of overall glucose disposal, and reduced glucose effectiveness also contributes importantly to diabetes pathogenesis. Although mechanisms underlying glucose effectiveness are poorly understood, growing evidence suggests that the brain can dynamically regulate this process in ways that improve or even normalize glycaemia in rodent models of diabetes. Here we present evidence of a brain-centred glucoregulatory system (BCGS) that can lower blood glucose levels via both insulin-dependent and -independent mechanisms, and propose a model in which complex and highly coordinated interactions between the BCGS and pancreatic islets promote normal glucose homeostasis. Because activation of either regulatory system can compensate for failure of the other, defects in both may be required for diabetes to develop. Consequently, therapies that target the BCGS in addition to conventional approaches based on enhancing insulin effects may have the potential to induce diabetes remission, whereas targeting just one typically does not.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Insulin signal transduction.
Figure 2: Schematic illustrations of brain- and islet-centred glucoregulatory systems.
Figure 3: Proposed contributions of defective brain- and islet-centred glucoregulatory systems to T2D pathogenesis.


  1. 1

    Ogden, C. L. et al. Prevalence of overweight and obesity in the United States, 1999–2004. J. Am. Med. Assoc. 295, 1549–1555 (2006)

    CAS  Article  Google Scholar 

  2. 2

    Cowie, C. C. et al. Prevalence of diabetes and impaired fasting glucose in adults in the U.S. population: National Health And Nutrition Examination Survey 1999–2002. Diabetes Care 29, 1263–1268 (2006)

    Article  Google Scholar 

  3. 3

    Bernard, C. Leçons de Ohysiologie Experimentale Appliqués á là Medecine (Paris, J.-B. Baillière, 1854)

    Google Scholar 

  4. 4

    Biddinger, S. B. & Kahn, C. R. From mice to men: insights into the insulin resistance syndromes. Annu. Rev. Physiol. 68, 123–158 (2006)

    CAS  Article  Google Scholar 

  5. 5

    Morton, G. J. et al. FGF19 action in the brain induces insulin-independent glucose lowering J. Clin. Invest. (1 October 2013)Administration of a low dose of the hormone FGF19 directly into the brain of leptin-deficient ob/ob mice ameliorated glucose intolerance by rapidly, potently and selectively increasing glucose effectiveness.

  6. 6

    Mingrone, G. et al. Bariatric surgery versus conventional medical therapy for type 2 diabetes. N. Engl. J. Med. 366, 1577–1585 (2012)

    CAS  Article  Google Scholar 

  7. 7

    Schauer, P. R. et al. Bariatric surgery versus intensive medical therapy in obese patients with diabetes. N. Engl. J. Med. 366, 1567–1576 (2012)

    CAS  Article  Google Scholar 

  8. 8

    Breen, D. M. et al. Jejunal nutrient sensing is required for duodenal–jejunal bypass surgery to rapidly lower glucose concentrations in uncontrolled diabetes. Nature Med. 18, 950–955 (2012)

    CAS  Article  Google Scholar 

  9. 9

    Jiao, J. et al. Restoration of euglycemia after duodenal bypass surgery is reliant on central and peripheral inputs in zucker fa/fa rats. Diabetes 62, 1074–1083 (2013)

    CAS  Article  Google Scholar 

  10. 10

    Cummings, D. E. & Flum, D. R. Gastrointestinal surgery as a treatment for diabetes. J. Am. Med. Assoc. 299, 341–343 (2008)

    CAS  Google Scholar 

  11. 11

    Kashyap, S. R. et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care 36, 2175–2182 (2013)

    CAS  Article  Google Scholar 

  12. 12

    Schwartz, M. W. & Porte, D., Jr Diabetes, obesity, and the brain. Science 307, 375–379 (2005)

    CAS  ADS  Article  Google Scholar 

  13. 13

    Sandoval, D., Cota, D. & Seeley, R. J. The integrative role of CNS fuel-sensing mechanisms in energy balance and glucose regulation. Annu. Rev. Physiol. 70, 513–535 (2008)

    CAS  Article  Google Scholar 

  14. 14

    Elmquist, J. K., Coppari, R., Balthasar, N., Ichinose, M. & Lowell, B. B. Identifying hypothalamic pathways controlling food intake, body weight, and glucose homeostasis. J. Comp. Neurol. 493, 63–71 (2005)

    CAS  Article  Google Scholar 

  15. 15

    Obici, S., Zhang, B. B., Karkanias, G. & Rossetti, L. Hypothalamic insulin signaling is required for inhibition of glucose production. Nature Med. 8, 1376–1382 (2002)

    CAS  Article  Google Scholar 

  16. 16

    Lam, T. K., Gutierrez-Juarez, R., Pocai, A. & Rossetti, L. Regulation of blood glucose by hypothalamic pyruvate metabolism. Science 309, 943–947 (2005)

    CAS  ADS  Article  Google Scholar 

  17. 17

    Coppari, R. et al. The hypothalamic arcuate nucleus: a key site for mediating leptin’s effects on glucose homeostasis and locomotor activity. Cell Metab. 1, 63–72 (2005)

    CAS  Article  Google Scholar 

  18. 18

    Morton, G. J. et al. Leptin regulates insulin sensitivity via phosphatidylinositol-3-OH kinase signaling in mediobasal hypothalamic neurons. Cell Metab. 2, 411–420 (2005)

    CAS  Article  Google Scholar 

  19. 19

    Jordan, S. D., Konner, A. C. & Bruning, J. C. Sensing the fuels: glucose and lipid signaling in the CNS controlling energy homeostasis. Cell. Mol. Life Sci. 67, 3255–3273 (2010)

    CAS  Article  Google Scholar 

  20. 20

    Hill, J. W. et al. Direct insulin and leptin action on pro-opiomelanocortin neurons is required for normal glucose homeostasis and fertility. Cell Metab. 11, 286–297 (2010)

    CAS  Article  Google Scholar 

  21. 21

    Lin, H. V. & Accili, D. Hormonal regulation of hepatic glucose production in health and disease. Cell Metab. 14, 9–19 (2011)

    CAS  Article  Google Scholar 

  22. 22

    DeFronzo, R. A. Banting Lecture. From the triumvirate to the ominous octet: a new paradigm for the treatment of type 2 diabetes mellitus. Diabetes 58, 773–795 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Edgerton, D. S. et al. Effects of insulin on the metabolic control of hepatic gluconeogenesis in vivo. Diabetes 58, 2766–2775 (2009)

    CAS  Article  Google Scholar 

  24. 24

    Mittelman, S. D., Fu, Y. Y., Rebrin, K., Steil, G. & Bergman, R. N. Indirect effect of insulin to suppress endogenous glucose production is dominant, even with hyperglucagonemia. J. Clin. Invest. 100, 3121–3130 (1997)

    CAS  Article  Google Scholar 

  25. 25

    Lu, M. et al. Insulin regulates liver metabolism in vivo in the absence of hepatic Akt and Foxo1. Nature Med. 18, 388–395 (2012)Systemic insulin administration was shown to suppress HGP effectively in mice with livers that were genetically modified to be unable to respond to the direct effect of insulin, thus establishing the existence of an indirect mechanism for control of HGP.

    CAS  Article  Google Scholar 

  26. 26

    Cheng, Z. & White, M. F. The AKTion in non-canonical insulin signaling. Nature Med. 18, 351–353 (2012)

    CAS  Article  Google Scholar 

  27. 27

    Ramnanan, C. J. et al. Brain insulin action augments hepatic glycogen synthesis without suppressing glucose production or gluconeogenesis in dogs. J. Clin. Invest. 121, 3713–3723 (2011)

    CAS  Article  Google Scholar 

  28. 28

    Kishore, P. et al. Activation of KATP channels suppresses glucose production in humans. J. Clin. Invest. 121, 4916–4920 (2011)

    CAS  Article  Google Scholar 

  29. 29

    Michael, M. D. et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 6, 87–97 (2000)

    CAS  Article  Google Scholar 

  30. 30

    German, J. P. et al. Leptin activates a novel CNS mechanism for insulin-independent normalization of severe diabetic hyperglycemia. Endocrinology 152, 394–404 (2011)Hyperglycaemia was normalized by direct infusion of leptin into the brain of rats with uncontrolled, insulin-deficient diabetes, establishing the inherent capacity of the brain to maintain glucose homeostasis without the need for insulin.

    CAS  Article  Google Scholar 

  31. 31

    Morton, G. J. & Schwartz, M. W. Leptin and the central nervous system control of glucose metabolism. Physiol. Rev. 91, 389–411 (2011)

    CAS  Article  Google Scholar 

  32. 32

    Yu, X., Park, B. H., Wang, M. Y., Wang, Z. V. & Unger, R. H. Making insulin-deficient type 1 diabetic rodents thrive without insulin. Proc. Natl Acad. Sci. USA 105, 14070–14075 (2008)

    CAS  ADS  Article  Google Scholar 

  33. 33

    Kruger, A. J. et al. Leptin treatment confers clinical benefit at multiple stages of virally induced type 1 diabetes in BB rats. Autoimmunity 44, 137–148 (2011)

    CAS  Article  Google Scholar 

  34. 34

    Havel, P. J. et al. Marked and rapid decreases of circulating leptin in streptozotocin diabetic rats: reversal by insulin. Am. J. Physiol. 274, R1482–R1491 (1998)

    CAS  PubMed  Google Scholar 

  35. 35

    Semple, R. K., Savage, D. B., Cochran, E. K., Gorden, P. & O’Rahilly, S. Genetic syndromes of severe insulin resistance. Endocr. Rev. 32, 498–514 (2011)

    CAS  Article  Google Scholar 

  36. 36

    German, J. P. et al. Leptin deficiency causes insulin resistance induced by uncontrolled diabetes. Diabetes 59, 1626–1634 (2010)

    CAS  Article  Google Scholar 

  37. 37

    Schaap, F. G. Role of fibroblast growth factor 19 in the control of glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 15, 386–391 (2012)

    CAS  Article  Google Scholar 

  38. 38

    Ryan, K. K. et al. Fibroblast growth factor-19 action in the brain reduces food intake and body weight and improves glucose tolerance in male rats. Endocrinology 154, 9–15 (2013)

    CAS  Article  Google Scholar 

  39. 39

    Best, J. D. et al. Role of glucose effectiveness in the determination of glucose tolerance. Diabetes Care 19, 1018–1030 (1996)A definitive review of glucose effectiveness and its role in both normal glucose homeostasis and diabetes.

    CAS  Article  Google Scholar 

  40. 40

    Martin, B. C. et al. Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340, 925–929 (1992)

    CAS  Article  Google Scholar 

  41. 41

    Moore, M. C., Coate, K. C., Winnick, J. J., An, Z. & Cherrington, A. D. Regulation of hepatic glucose uptake and storage in vivo. Adv. Nutr. 3, 286–294 (2012)

    CAS  Article  Google Scholar 

  42. 42

    D’Alessio, D. A., Kahn, S. E., Leusner, C. R. & Ensinck, J. W. Glucagon-like peptide 1 enhances glucose tolerance both by stimulation of insulin release and by increasing insulin-independent glucose disposal. J. Clin. Invest. 93, 2263–2266 (1994)

    Article  Google Scholar 

  43. 43

    Sandoval, D. A., Bagnol, D., Woods, S. C., D’Alessio, D. A. & Seeley, R. J. Arcuate glucagon-like peptide 1 receptors regulate glucose homeostasis but not food intake. Diabetes 57, 2046–2054 (2008)

    CAS  Article  Google Scholar 

  44. 44

    Kahn, S. E. et al. Treatment with a somatostatin analog decreases pancreatic B-cell and whole body sensitivity to glucose. J. Clin. Endocrinol. Metab. 71, 994–1002 (1990)

    CAS  Article  Google Scholar 

  45. 45

    Petersen, K. F. et al. Leptin reverses insulin resistance and hepatic steatosis in patients with severe lipodystrophy. J. Clin. Invest. 109, 1345–1350 (2002)

    CAS  Article  Google Scholar 

  46. 46

    Osundiji, M. A. & Evans, M. L. Brain control of insulin and glucagon secretion. Endocrinol. Metab. Clin. North Am. 42, 1–14 (2013)

    Article  Google Scholar 

  47. 47

    Thaler, J. P. et al. Obesity is associated with hypothalamic injury in rodents and humans. J. Clin. Invest. 122, 153–162 (2012)

    CAS  Article  Google Scholar 

  48. 48

    Cai, D. One step from prediabetes to diabetes: hypothalamic inflammation? Endocrinology 153, 1010–1013 (2012)

    CAS  Article  Google Scholar 

  49. 49

    Posey, K. A. et al. Hypothalamic proinflammatory lipid accumulation, inflammation, and insulin resistance in rats fed a high-fat diet. Am. J. Physiol. Endocrinol. Metab. 296, E1003–E1012 (2009)

    CAS  Article  Google Scholar 

  50. 50

    Milanski, M. et al. Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61, 1455–1462 (2012)

    CAS  Article  Google Scholar 

  51. 51

    Horvath, T. L. et al. Synaptic input organization of the melanocortin system predicts diet-induced hypothalamic reactive gliosis and obesity. Proc. Natl Acad. Sci. USA 107, 14875–14880 (2010)

    CAS  ADS  Article  Google Scholar 

  52. 52

    Alkemade, A. et al. AgRP and NPY expression in the human hypothalamic infundibular nucleus correlate with body mass index, whereas changes in αMSH are related to type 2 diabetes. J. Clin. Endocrinol. Metab. 97, E925–E933 (2012)

    CAS  Article  Google Scholar 

  53. 53

    Troy, S. et al. Intestinal gluconeogenesis is a key factor for early metabolic changes after gastric bypass but not after gastric lap-band in mice. Cell Metab. 8, 201–211 (2008)

    CAS  Article  Google Scholar 

  54. 54

    Shin, A. C., Zheng, H. & Berthoud, H. R. Vagal innervation of the hepatic portal vein and liver is not necessary for Roux-en-Y gastric bypass surgery-induced hypophagia, weight loss, and hypermetabolism. Ann. Surg. 255, 294–301 (2012)

    Article  Google Scholar 

  55. 55

    Paranjape, S. A. et al. Improvement in hepatic insulin sensitivity after Roux-en-Y gastric bypass in a rat model of obesity is partially mediated by hypothalamic insulin action. Diabetologia 56, 2055–2058 (2013)

    CAS  Article  Google Scholar 

  56. 56

    Gerhard, G. S. et al. A role for fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care 36, 1859–1864 (2013)

    CAS  Article  Google Scholar 

  57. 57

    Ai-Luen, W. et al. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci. Transl. Med. 3, 113ra26 (2011)

    Google Scholar 

Download references


The authors would like to thank A. G. Bell for inspiration and D. Porte Jr for comments. This work was partly funded by National Institutes of Health (NIH) grants DK083042 (M.W.S.), DK093848 (R.J.S.) and DK089053 (G.J.M.), and the Nutrition Obesity Research Centre and Diabetes Research Centre at the University of Washington, and the Helmholtz Alliance ICEMED (Imaging and Curing Environmental Metabolic Diseases), through the Initiative and Networking Fund of the Helmholtz Association.

Author information




All of the authors contributed to the ideas presented in and the writing of this manuscript.

Corresponding author

Correspondence to Michael W. Schwartz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schwartz, M., Seeley, R., Tschöp, M. et al. Cooperation between brain and islet in glucose homeostasis and diabetes. Nature 503, 59–66 (2013).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing