Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function


The basic unit of skeletal muscle in all metazoans is the multinucleate myofibre, within which individual nuclei are regularly positioned1. The molecular machinery responsible for myonuclear positioning is not known. Improperly positioned nuclei are a hallmark of numerous diseases of muscle2, including centronuclear myopathies3, but it is unclear whether correct nuclear positioning is necessary for muscle function. Here we identify the microtubule-associated protein ensconsin (Ens)/microtubule-associated protein 7 (MAP7) and kinesin heavy chain (Khc)/Kif5b as essential, evolutionarily conserved regulators of myonuclear positioning in Drosophila and cultured mammalian myotubes. We find that these proteins interact physically and that expression of the Kif5b motor domain fused to the MAP7 microtubule-binding domain rescues nuclear positioning defects in MAP7-depleted cells. This suggests that MAP7 links Kif5b to the microtubule cytoskeleton to promote nuclear positioning. Finally, we show that myonuclear positioning is physiologically important. Drosophila ens mutant larvae have decreased locomotion and incorrect myonuclear positioning, and these phenotypes are rescued by muscle-specific expression of Ens. We conclude that improper nuclear positioning contributes to muscle dysfunction in a cell-autonomous fashion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Myonuclear positioning requires ensconsin/MAP7.
Figure 2: Kinesin is required for myonuclear positioning.
Figure 3: Kinesin and ensconsin/MAP7 interact to regulate nuclear position.
Figure 4: Ensconsin/MAP7 is required for intracellular muscle organization and efficient larval locomotion.


  1. 1

    Bruusgaard, J. C., Liestøl, K., Ekmark, M., Kollstad, K. & Gundersen, K. Number and spatial distribution of nuclei in the muscle fibres of normal mice studied in vivo. J. Physiol. (Lond.) 551, 467–478 (2003)

    CAS  Article  Google Scholar 

  2. 2

    Cohn, R. D. & Campbell, K. P. Molecular basis of muscular dystrophies. Muscle Nerve 23, 1456–1471 (2000)

    CAS  Article  Google Scholar 

  3. 3

    Jungbluth, H., Wallgren-Pettersson, C. & Laporte, J. Centronuclear (myotubular) myopathy. Orphanet J. Rare Dis. 3, 26 (2008)

    Article  Google Scholar 

  4. 4

    Richardson, B. E., Beckett, K., Nowak, S. J. & Baylies, M. K. SCAR/WAVE and Arp2/3 are crucial for cytoskeletal remodeling at the site of myoblast fusion. Development 134, 4357–4367 (2007)

    CAS  Article  Google Scholar 

  5. 5

    Beckett, K. & Baylies, M. K. The development of the Drosophila larval body wall muscles. Int. Rev. Neurobiol. 75, 55–70 (2006)

    CAS  Article  Google Scholar 

  6. 6

    Prokop, A., Martín-Bermudo, M. D., Bate, M. & Brown, N. H. Absence of PS integrins or laminin A affects extracellular adhesion, but not intracellular assembly, of hemiadherens and neuromuscular junctions in Drosophila embryos. Dev. Biol. 196, 58–76 (1998)

    CAS  Article  Google Scholar 

  7. 7

    Volk, T. Singling out Drosophila tendon cells: a dialogue between two distinct cell types. Trends Genet. 15, 448–453 (1999)

    CAS  Article  Google Scholar 

  8. 8

    Sung, H.-H. et al. Drosophila ensconsin promotes productive recruitment of Kinesin-1 to microtubules. Dev. Cell 15, 866–876 (2008)

    CAS  Article  Google Scholar 

  9. 9

    Fischer-Vize, J. A. & Mosley, K. L. Marbles mutants: uncoupling cell determination and nuclear migration in the developing Drosophila eye. Development 120, 2609–2618 (1994)

    CAS  PubMed  Google Scholar 

  10. 10

    Brendza, K. M., Rose, D. J., Gilbert, S. P. & Saxton, W. M. Lethal kinesin mutations reveal amino acids important for ATPase activation and structural coupling. J. Biol. Chem. 274, 31506–31514 (1999)

    CAS  Article  Google Scholar 

  11. 11

    Vale, R. D., Reese, T. S. & Sheetz, M. P. Identification of a novel force-generating protein, kinesin, involved in microtubule-based motility. Cell 42, 39–50 (1985)

    CAS  Article  Google Scholar 

  12. 12

    Vale, R. D. et al. Direct observation of single kinesin molecules moving along microtubules. Nature 380, 451–453 (1996)

    ADS  CAS  Article  Google Scholar 

  13. 13

    Masson, D. & Kreis, T. E. Identification and molecular characterization of E-MAP-115, a novel microtubule-associated protein predominantly expressed in epithelial cells. J. Cell Biol. 123, 357–371 (1993)

    CAS  Article  Google Scholar 

  14. 14

    Louis, M., Huber, T., Benton, R., Sakmar, T. P. & Vosshall, L. B. Bilateral olfactory sensory input enhances chemotaxis behavior. Nature Neurosci. 11, 187–199 (2008)

    CAS  Article  Google Scholar 

  15. 15

    Bai, J., Hartwig, J. H. & Perrimon, N. SALS, a WH2-domain-containing protein, promotes sarcomeric actin filament elongation from pointed ends during Drosophila muscle growth. Dev. Cell 13, 828–842 (2007)

    CAS  Article  Google Scholar 

  16. 16

    Razzaq, A. et al. Amphiphysin is necessary for organization of the excitation-contraction coupling machinery of muscles, but not for synaptic vesicle endocytosis in Drosophila. Genes Dev. 15, 2967–2979 (2001)

    CAS  Article  Google Scholar 

  17. 17

    McCabe, B. D. et al. The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39, 241–254 (2003)

    CAS  Article  Google Scholar 

  18. 18

    Tassin, A. M., Maro, B. & Bornens, M. Fate of microtubule-organizing centers during myogenesis in vitro. J. Cell Biol. 100, 35–46 (1985)

    CAS  Article  Google Scholar 

  19. 19

    Guerin, C. M. & Kramer, S. G. RacGAP50C directs perinuclear γ-tubulin localization to organize the uniform microtubule array required for Drosophila myotube extension. Development 136, 1411–1421 (2009)

    CAS  Article  Google Scholar 

  20. 20

    Bugnard, E., Zaal, K. J. M. & Ralston, E. Reorganization of microtubule nucleation during muscle differentiation. Cell Motil. Cytoskeleton 60, 1–13 (2005)

    Article  Google Scholar 

  21. 21

    Glotzer, M. The 3Ms of central spindle assembly: microtubules, motors and MAPs. Nature Rev. Mol. Cell Biol. 10, 9–20 (2009)

    CAS  Article  Google Scholar 

  22. 22

    Meyerzon, M., Fridolfsson, H. N., Ly, N., McNally, F. J. & Starr, D. A. UNC-83 is a nuclear-specific cargo adaptor for kinesin-1-mediated nuclear migration. Development 136, 2725–2733 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Grady, R. M., Starr, D. A., Ackerman, G. L., Sanes, J. R. & Han, M. Syne proteins anchor muscle nuclei at the neuromuscular junction. Proc. Natl Acad. Sci. USA 102, 4359–4364 (2005)

    ADS  CAS  Article  Google Scholar 

  24. 24

    Lei, K. et al. SUN1 and SUN2 play critical but partially redundant roles in anchoring nuclei in skeletal muscle cells in mice. Proc. Natl Acad. Sci. USA 106, 10207–10212 (2009)

    ADS  Article  Google Scholar 

  25. 25

    Pavlath, G. K., Rich, K., Webster, S. G. & Blau, H. M. Localization of muscle gene products in nuclear domains. Nature 337, 570–573 (1989)

    ADS  CAS  Article  Google Scholar 

  26. 26

    Feng, G., Deák, P., Kasbekar, D. P., Gil, D. W. & Hall, L. M. Cytogenetic and molecular localization of tipE: a gene affecting sodium channels in Drosophila melanogaster. Genetics 139, 1679–1688 (1995)

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27

    Gindhart, J. G., Desai, C. J., Beushausen, S., Zinn, K. & Goldstein, L. S. Kinesin light chains are essential for axonal transport in Drosophila. J. Cell Biol. 141, 443–454 (1998)

    CAS  Article  Google Scholar 

  28. 28

    Zhang, Y. Q. et al. Drosophila fragile X-related gene regulates the MAP1B homolog Futsch to control synaptic structure and function. Cell 107, 591–603 (2001)

    CAS  Article  Google Scholar 

  29. 29

    Peña, P. & Garesse, R. The β subunit of the Drosophila melanogaster ATP synthase: cDNA cloning, amino acid analysis and identification of the protein in adult flies. Biochem. Biophys. Res. Commun. 195, 785–791 (1993)

    Article  Google Scholar 

  30. 30

    Mitchell, K. J. et al. Identification and characterization of a non-satellite cell muscle resident progenitor during postnatal development. Nature Cell Biol. 12, 257–266 (2010)

    CAS  Article  Google Scholar 

  31. 31

    Halfon, M. S. et al. New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes. Genesis 34, 135–138 (2002)

    CAS  Article  Google Scholar 

  32. 32

    Lewis, E. Method of Feeding Ethane Methylsulfonate (EMS) to Drosophila Males. (Drosophila Information Service, 1968)

    Google Scholar 

  33. 33

    Parlakian, A. et al. Skeletal muscle phenotypically converts and selectively inhibits metastatic cells in mice. PLoS ONE 5, e9299 (2010)

    ADS  Article  Google Scholar 

  34. 34

    De Palma, C. et al. Nitric oxide inhibition of Drp1-mediated mitochondrial fission is critical for myogenic differentiation. Cell Death Differ. 17, 1684–1696 (2010)

    CAS  Article  Google Scholar 

  35. 35

    Khatau, S. B. et al. A perinuclear actin cap regulates nuclear shape. Proc. Natl Acad. Sci. USA 106, 19017–19022 (2009)

    ADS  CAS  Article  Google Scholar 

  36. 36

    Brent, J., Werner, K. & Mccabe, B. Drosophila larval NMJ dissection. J. Vis. Exp. 10.3791/1107. (2009)

  37. 37

    Brent, J., Werner, K. & McCabe, B. D. Drosophila larval NMJ immunohistochemistry. J. Vis. Exp. (25). e1108 10.3791/1108 (2009)

  38. 38

    Richardson, B. E., Beckett, K. & Baylies, M. K. Live imaging of Drosophila myoblast fusion. Methods Mol. Biol. 475, 263–274 (2008)

    Article  Google Scholar 

  39. 39

    Louis, M., Piccinotti, S. & Vosshall, L. B. High-resolution measurement of odor-driven behavior in Drosophila larvae. J. Vis. Exp. (11). e638 10.3791/638 (2008)

Download references


We thank K. Anderson, K. Hadjantonakis, A. Hall and D. Sassoon for comments on the manuscript. We thank the Baylies and Gomes Laboratories for discussions, and R. Fernandez-Gonzalez for his assistance in computational analysis. The initial screens in Drosophila were supported by National Institutes of Health (NIH) grants GM056989 and GM0781318 to M.B.; the Drosophila nuclear positioning analysis was supported by a Muscular Dystrophy Association (MDA) grant to M.B. T.M. was supported initially by NIH Training Grant T32 BM008539. B.C. was supported initially by a Fondation pour la Recherche Médicale (FRM) fellowship. V.G. was supported initially by a Région Île-de-France fellowship. Mammalian work was supported by Muscular Dystrophy Association (MDA), INSERM Avenir programme and Agence Nationale de la Recherche (ANR) grants to E.R.G.

Author information




T.M. and V.G. are joint first authors. E.G. and M.B. are joint senior authors. M.B., M.X., T.M., E.G., V.G. and B.C. conceived, designed and analysed the experiments. T.M., M.X., E.S. and B.R. conducted the Drosophila experimental work. V.G. and B.C. conducted the mouse primary cultures and C2C12 experimental work. The manuscript was written by T.M., E.S., V.G., E.G. and M.B. with assistance from other authors.

Corresponding authors

Correspondence to Edgar R. Gomes or Mary K. Baylies.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Figures 1-10 and legends for Supplementary Movies 1-8. (PDF 18266 kb)

Supplementary Movie 1

Nuclear migration in the Lateral Transverse muscles of a wildtype Drosophila embryo - see Supplementary Information file for full legend. (MOV 1658 kb)

Supplementary Movie 2

Nuclear migration in the Lateral Transverse muscles of an ensswo mutant embryo - see Supplementary Information file for full legend. (MOV 1547 kb)

Supplementary Movie 3

Control primary myotubes - see Supplementary Information file for full legend. (MOV 422 kb)

Supplementary Movie 4

Map7 siRNA depleted primary myotubes - see Supplementary Information file for full legend. (MOV 315 kb)

Supplementary Movie 5

Control C2C12-H1B-GFP myotubes - see Supplementary Information file for full legend. (MOV 308 kb)

Supplementary Movie 6

Map 7 siRNA C2C12-H1B-GFP myotubes - see Supplementary Information file for full legend. (MOV 217 kb)

Supplementary Movie 7

Control primary myotubes - see Supplementary Information file for full legend. (MOV 419 kb)

Supplementary Movie 8

Kif5b siRNA depleted primary myotubes - see Supplementary Information file for full legend. (MOV 305 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Metzger, T., Gache, V., Xu, M. et al. MAP and kinesin-dependent nuclear positioning is required for skeletal muscle function. Nature 484, 120–124 (2012).

Download citation

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links