Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Human nutrition, the gut microbiome and the immune system


Marked changes in socio-economic status, cultural traditions, population growth and agriculture are affecting diets worldwide. Understanding how our diet and nutritional status influence the composition and dynamic operations of our gut microbial communities, and the innate and adaptive arms of our immune system, represents an area of scientific need, opportunity and challenge. The insights gleaned should help to address several pressing global health problems.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: A schematic of the proposed relationships between the gut microbiota, the immune system and the diet, which underlie the development of malnutrition.
Figure 2: Metabolite sensors that help to coordinate immune responses.


  1. 1

    Whitacre, P. T., Fagen, A. P., Husbands, J. L. & Sharples, F. E. Implementing the New Biology: Decadal Challenges Linking Food, Energy, and the Environment (National Research Council of The National Academies of Science, 2010).

    Google Scholar 

  2. 2

    Muegge, B. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  3. 3

    Goodman, A. L. et al. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc. Natl Acad. Sci. USA 108, 6252–6257 (2011). This report highlights the use of gnotobiotic mice containing a transplanted human gut microbiome for studying the dynamic interactions between diet and the microbial community.

    ADS  CAS  PubMed  Google Scholar 

  4. 4

    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

    ADS  CAS  Google Scholar 

  5. 5

    Bryce, J., Boschi-Pinto, C., Shibuya, K. & Black, R. E. WHO estimates of the causes of death in children. Lancet 365, 1147–1152 (2005).

    PubMed  Google Scholar 

  6. 6

    Bhutta, Z. A. et al. What works? Interventions for maternal and child undernutrition and survival. Lancet 371, 417–440 (2008).

    PubMed  Google Scholar 

  7. 7

    Barker, D. J. Adult consequences of fetal growth restriction. Clin. Obstet. Gynecol. 49, 270–283 (2006).

    PubMed  Google Scholar 

  8. 8

    Wikoff, W. R. et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl Acad. Sci. USA 106, 3698–3703 (2009).

    ADS  CAS  PubMed  Google Scholar 

  9. 9

    Martin, F. P. et al. Probiotic modulation of symbiotic gut microbial–host metabolic interactions in a humanized microbiome mouse model. Mol. Syst. Biol. 4, 157 (2008).

    PubMed  PubMed Central  Google Scholar 

  10. 10

    Wright, J. D., Kennedy-Stephenson, J., Wang, C. Y., McDowell, M. A. & Johnson, C. L. Trends in intake of energy and macronutrients — United States, 1971–2000. MMWR Morb. Mortal. Wkly Rep. 53, 80–82 (2004).

    Google Scholar 

  11. 11

    Chase, J. M. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328, 1388–1391 (2010).

    ADS  CAS  PubMed  Google Scholar 

  12. 12

    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA 108, 4578–4585 (2011).

    ADS  CAS  PubMed  Google Scholar 

  13. 13

    Perry, G. H. et al. Diet and the evolution of human amylase gene copy number variation. Nature Genet. 39, 1256–1260 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. 14

    Hehemann, J. H. et al. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464, 908–912 (2010).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    La Cava, A. & Matarese, G. The weight of leptin in immunity. Nature Rev. Immunol. 4, 371–379 (2004).

    CAS  Google Scholar 

  16. 16

    Lord, G. M. et al. Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394, 897–901 (1998).

    ADS  CAS  Google Scholar 

  17. 17

    De Rosa, V. et al. A key role of leptin in the control of regulatory T cell proliferation. Immunity 26, 241–255 (2007).

    CAS  Google Scholar 

  18. 18

    Guo, X. et al. Leptin signaling in intestinal epithelium mediates resistance to enteric infection by Entamoeba histolytica. Mucosal Immunol. 4, 294–303 (2011). This study demonstrates the role of leptin-receptor signalling in protecting the intestinal epithelium against infection and damage by the enteropathogen E. histolytica.

    CAS  Google Scholar 

  19. 19

    Backhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

    ADS  Google Scholar 

  20. 20

    Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

    ADS  Google Scholar 

  21. 21

    Fox, C. J., Hammerman, P. S. & Thompson, C. B. Fuel feeds function: energy metabolism and the T-cell response. Nature Rev. Immunol. 5, 844–852 (2005).

    CAS  Google Scholar 

  22. 22

    Michalek, R. D. & Rathmell, J. C. The metabolic life and times of a T-cell. Immunol. Rev. 236, 190–202 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23

    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Lupton, J. R. Microbial degradation products influence colon cancer risk: the butyrate controversy. J. Nutr. 134, 479–482 (2004).

    CAS  PubMed  Google Scholar 

  25. 25

    Bird, J. J. et al. Helper T cell differentiation is controlled by the cell cycle. Immunity 9, 229–237 (1998).

    CAS  PubMed  Google Scholar 

  26. 26

    Peng, L., He, Z., Chen, W., Holzman, I. R. & Lin, J. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier. Pediatr. Res. 61, 37–41 (2007).

    CAS  PubMed  Google Scholar 

  27. 27

    Maslowski, K. M. et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature 461, 1282–1286 (2009).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Fukuda, S. et al. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469, 543–547 (2011). References 27 and 28 demonstrate how microbiota-derived short-chain fatty acids help to modulate immune responses and susceptibility to enteropathogen invasion.

    ADS  CAS  PubMed  Google Scholar 

  29. 29

    Kim, G. W., Gocevski, G., Wu, C. J. & Yang, X. J. Dietary, metabolic, and potentially environmental modulation of the lysine acetylation machinery. Int. J. Cell Biol. 2010, 632739 (2010).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Nguyen, M. T. et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids via Toll-like receptors 2 and 4 and JNK-dependent pathways. J. Biol. Chem. 282, 35279–35292 (2007).

    CAS  PubMed  Google Scholar 

  31. 31

    Mariathasan, S. et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440, 228–232 (2006).

    ADS  CAS  Google Scholar 

  32. 32

    Thomson, A. W., Turnquist, H. R. & Raimondi, G. Immunoregulatory functions of mTOR inhibition. Nature Rev. Immunol. 9, 324–337 (2009).

    CAS  Google Scholar 

  33. 33

    Nakamura, T. et al. Double-stranded RNA-dependent protein kinase links pathogen sensing with stress and metabolic homeostasis. Cell 140, 338–348 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Stockinger, B. Beyond toxicity: aryl hydrocarbon receptor-mediated functions in the immune system. J. Biol. 8, 61 (2009).

    PubMed  PubMed Central  Google Scholar 

  35. 35

    Glass, C. K. & Ogawa, S. Combinatorial roles of nuclear receptors in inflammation and immunity. Nature Rev. Immunol. 6, 44–55 (2006).

    CAS  Google Scholar 

  36. 36

    Araki, K., Youngblood, B. & Ahmed, R. The role of mTOR in memory CD8 T-cell differentiation. Immunol. Rev. 235, 234–243 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Esser, C., Rannug, A. & Stockinger, B. The aryl hydrocarbon receptor in immunity. Trends Immunol. 30, 447–454 (2009).

    CAS  PubMed  Google Scholar 

  38. 38

    Mezrich, J. D. et al. An interaction between kynurenine and the aryl hydrocarbon receptor can generate regulatory T cells. J. Immunol. 185, 3190–3198 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Platzer, B. et al. Aryl hydrocarbon receptor activation inhibits in vitro differentiation of human monocytes and Langerhans dendritic cells. J. Immunol. 183, 66–74 (2009).

    CAS  PubMed  Google Scholar 

  40. 40

    Quintana, F. J. et al. Control of Treg and TH17 cell differentiation by the aryl hydrocarbon receptor. Nature 453, 65–71 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Veldhoen, M. et al. The aryl hydrocarbon receptor links TH17-cell-mediated autoimmunity to environmental toxins. Nature 453, 106–109 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  42. 42

    Bronte, V. & Zanovello, P. Regulation of immune responses by L-arginine metabolism. Nature Rev. Immunol. 5, 641–654 (2005).

    CAS  Google Scholar 

  43. 43

    Mellor, A. L. & Munn, D. H. IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nature Rev. Immunol. 4, 762–774 (2004).

    CAS  Google Scholar 

  44. 44

    Munn, D. H. et al. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633–642 (2005).

    CAS  PubMed  Google Scholar 

  45. 45

    Allen, R. H. & Stabler, S. P. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am. J. Clin. Nutr. 87, 1324–1335 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Goodman, A. L. et al. Identifying genetic determinants needed to establish a human gut symbiont in its habitat. Cell Host Microbe 6, 279–289 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Anderson, P. J. et al. One pathway can incorporate either adenine or dimethylbenzimidazole as an α-axial ligand of B12 cofactors in Salmonella enterica. J. Bacteriol. 190, 1160–1171 (2008).

    CAS  PubMed  Google Scholar 

  48. 48

    Curtale, F., Pokhrel, R. P., Tilden, R. L. & Higashi, G. Intestinal helminths and xerophthalmia in Nepal. A case control study. J. Trop. Pediatr. 41, 334–337 (1995).

    CAS  PubMed  Google Scholar 

  49. 49

    Sommer, A., Tarwotjo, I. & Katz, J. Increased risk of xerophthalmia following diarrhea and respiratory disease. Am. J. Clin. Nutr. 45, 977–980 (1987).

    CAS  PubMed  Google Scholar 

  50. 50

    Cha, H. R. et al. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J. Immunol. 184, 6799–6806 (2010). This study shows how a single micronutrient, vitamin A, modulates host immune responses through its effects on the composition of the intestinal microbiota.

    CAS  PubMed  Google Scholar 

  51. 51

    Ivanov, I. I. et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139, 485–498 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Gaboriau-Routhiau, V. et al. The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31, 677–689 (2009). References 51 and 52 are seminal studies identifying a single member of the intestinal microbiota that drives the differentiation of intestinal T H 17 cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. 53

    Schaible, U. E. & Kaufmann, S. H. Iron and microbial infection. Nature Rev. Microbiol. 2, 946–953 (2004).

    CAS  Google Scholar 

  54. 54

    Reddy, B. S., Pleasants, J. R. & Wostmann, B. S. Effect of intestinal microflora on iron and zinc metabolism, and on activities of metalloenzymes in rats. J. Nutr. 102, 101–107 (1972).

    CAS  PubMed  Google Scholar 

  55. 55

    Werner, T. et al. Depletion of luminal iron alters the gut microbiota and prevents Crohn's disease-like ileitis. Gut 60, 325–333 (2011).

    CAS  PubMed  Google Scholar 

  56. 56

    Ley, R. E. Obesity and the human microbiome. Curr. Opin. Gastroenterol. 26, 5–11 (2010).

    PubMed  Google Scholar 

  57. 57

    Turnbaugh, P. J., Backhed, F., Fulton, L. & Gordon, J. I. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Mandard, S. et al. The fasting-induced adipose factor/angiopoietin-like protein 4 is physically associated with lipoproteins and governs plasma lipid levels and adiposity. J. Biol. Chem. 281, 934–944 (2006).

    CAS  PubMed  Google Scholar 

  59. 59

    Vijay-Kumar, M. et al. Metabolic syndrome and altered gut microbiota in mice lacking Toll-like receptor 5. Science 328, 228–231 (2010). This paper links changes in the configuration of the intestinal microbiota in Tlr5 -deficient mice to inflammation and development of metabolic syndrome.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Gregor, M. F. & Hotamisligil, G. S. Inflammatory mechanisms in obesity. Annu. Rev. Immunol. 29, 415–445 (2011).

    CAS  Google Scholar 

  61. 61

    Kintscher, U. et al. T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler. Thromb. Vasc. Biol. 28, 1304–1310 (2008).

    CAS  PubMed  Google Scholar 

  62. 62

    Winer, S. et al. Normalization of obesity-associated insulin resistance through immunotherapy. Nature Med. 15, 921–929 (2009).

    CAS  PubMed  Google Scholar 

  63. 63

    Zuniga, L. A. et al. IL-17 regulates adipogenesis, glucose homeostasis, and obesity. J. Immunol. 185, 6947–6959 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64

    Feuerer, M. et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nature Med. 15, 930–939 (2009).

    CAS  PubMed  Google Scholar 

  65. 65

    Uysal, K. T., Wiesbrock, S. M., Marino, M. W. & Hotamisligil, G. S. Protection from obesity-induced insulin resistance in mice lacking TNF-α function. Nature 389, 610–614 (1997).

    ADS  CAS  Google Scholar 

  66. 66

    Wen, L. et al. Innate immunity and intestinal microbiota in the development of type 1 diabetes. Nature 455, 1109–1113 (2008).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  67. 67

    Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

    CAS  PubMed  Google Scholar 

  68. 68

    Brun, P. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis. Am. J. Physiol. Gastrointest. Liver Physiol. 292, G518–G525 (2007).

    CAS  PubMed  Google Scholar 

  69. 69

    Shi, H. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance. J. Clin. Invest. 116, 3015–3025 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Wu, H. J. et al. Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32, 815–827 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71

    Lee, Y. K., Menezes, J. S., Umesaki, Y. & Mazmanian, S. K. Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc. Natl Acad. Sci. USA 108, 4615–4622 (2011).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    Valm, A. M. et al. Systems-level analysis of microbial community organization through combinatorial labeling and spectral imaging. Proc. Natl Acad. Sci. USA 108, 4152–4157 (2011).

    ADS  CAS  PubMed  Google Scholar 

  73. 73

    Golden, M. H. Oedematous malnutrition. Br. Med. Bull. 54, 433–444 (1998).

    CAS  PubMed  Google Scholar 

  74. 74

    Ferreira, R. B., Antunes, L. C. & Finlay, B. B. Should the human microbiome be considered when developing vaccines? PLoS Pathogens 6, e1001190 (2010).

    PubMed  PubMed Central  Google Scholar 

  75. 75

    Campbell, D. I. et al. Chronic T cell-mediated enteropathy in rural west African children: relationship with nutritional status and small bowel function. Pediatr. Res. 54, 306–311 (2003).

    ADS  PubMed  Google Scholar 

  76. 76

    Humphrey, J. H. Child undernutrition, tropical enteropathy, toilets, and handwashing. Lancet 374, 1032–1035 (2009). This is an excellent review of the relationship between environmental enteropathy and malnutrition.

    PubMed  Google Scholar 

  77. 77

    Guerrant, R. L., Oria, R. B., Moore, S. R., Oria, M. O. & Lima, A. A. Malnutrition as an enteric infectious disease with long-term effects on child development. Nutr. Rev. 66, 487–505 (2008).

    PubMed  PubMed Central  Google Scholar 

  78. 78

    World Health Organization. Meeting of the immunization Strategic Advisory Group of Experts, April 2009 — conclusions and recommendations. Wkly Epidemiol. Rec. 84, 220–236 (2009).

  79. 79

    Grassly, N. C. et al. Mucosal immunity after vaccination with monovalent and trivalent oral poliovirus vaccine in India. J. Infect. Dis. 200, 794–801 (2009).

    PubMed  Google Scholar 

  80. 80

    Lagos, R. et al. Effect of small bowel bacterial overgrowth on the immunogenicity of single-dose live oral cholera vaccine CVD 103-HgR. J. Infect. Dis. 180, 1709–1712 (1999).

    CAS  PubMed  Google Scholar 

  81. 81

    Nemes, E. et al. Gluten intake interferes with the humoral immune response to recombinant hepatitis B vaccine in patients with celiac disease. Pediatrics 121, e1570–e1576 (2008).

    PubMed  Google Scholar 

  82. 82

    Menendez-Corrada, R., Nettleship, E. & Santiago-Delpin, E. A. HLA and tropical sprue. Lancet 2, 1183–1185 (1986).

    CAS  PubMed  Google Scholar 

  83. 83

    Ghoshal, U. C. et al. Tropical sprue is associated with contamination of small bowel with aerobic bacteria and reversible prolongation of orocecal transit time. J. Gastroenterol. Hepatol. 18, 540–547 (2003).

    PubMed  Google Scholar 

  84. 84

    Hayes, K. S. et al. Exploitation of the intestinal microflora by the parasitic nematode Trichuris muris. Science 328, 1391–1394 (2010). This study demonstrates the co-evolution of bacterial and eukaryotic components of the microbiota and its effect on host immunity.

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Faith, J. J., McNulty, N. P., Rey, F. E. & Gordon, J. I. Predicting a human gut microbiota's response to diet in gnotobiotic mice. Science doi:10.1126/science.1206025 (19 May 2011).

  86. 86

    Gaboriau-Routhiau, V., Raibaud, P., Dubuquoy, C. & Moreau, M. C. Colonization of gnotobiotic mice with human gut microflora at birth protects against Escherichia coli heat-labile enterotoxin-mediated abrogation of oral tolerance. Pediatr. Res. 54, 739–746 (2003).

    PubMed  Google Scholar 

  87. 87

    Mazmanian, S. K., Liu, C. H., Tzianabos, A. O. & Kasper, D. L. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122, 107–118 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  88. 88

    Liu, G., Yang, K., Burns, S., Shrestha, S. & Chi, H. The S1P1-mTOR axis directs the reciprocal differentiation of TH1 and Treg cells. Nature Immunol. 11, 1047–1056 (2010).

    CAS  Google Scholar 

  89. 89

    Procaccini, C. et al. An oscillatory switch in mTOR kinase activity sets regulatory T cell responsiveness. Immunity 33, 929–941 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  90. 90

    Iwata, M. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 21, 527–538 (2004).

    CAS  PubMed  Google Scholar 

  91. 91

    Siddiqui, K. R. & Powrie, F. CD103+ GALT DCs promote Foxp3+ regulatory T cells. Mucosal Immunol. 1, S34–S38 (2008).

    CAS  PubMed  Google Scholar 

  92. 92

    Ertesvag, A., Engedal, N., Naderi, S. & Blomhoff, H. K. Retinoic acid stimulates the cell cycle machinery in normal T cells: involvement of retinoic acid receptor-mediated IL-2 secretion. J. Immunol. 169, 5555–5563 (2002).

    CAS  PubMed  Google Scholar 

  93. 93

    Iwata, M., Eshima, Y. & Kagechika, H. Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int. Immunol. 15, 1017–1025 (2003).

    CAS  PubMed  Google Scholar 

  94. 94

    Lemire, J. M., Adams, J. S., Sakai, R. & Jordan, S. C. 1α,25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J. Clin. Invest. 74, 657–661 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  95. 95

    Mora, J. R., Iwata, M. & von Andrian, U. H. Vitamin effects on the immune system: vitamins A and D take centre stage. Nature Rev. Immunol. 8, 685–698 (2008).

    CAS  Google Scholar 

  96. 96

    Daniel, C., Sartory, N. A., Zahn, N., Radeke, H. H. & Stein, J. M. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J. Pharmacol. Exp. Ther. 324, 23–33 (2008).

    CAS  PubMed  Google Scholar 

  97. 97

    Wang, T. T. et al. 1,25-Dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J. Immunol. 173, 2909–2912 (2004).

    CAS  PubMed  Google Scholar 

  98. 98

    Sigmundsdottir, H. et al. DCs metabolize sunlight-induced vitamin D3 to 'program' T cell attraction to the epidermal chemokine CCL27. Nature Immunol. 8, 285–293 (2007).

    CAS  Google Scholar 

  99. 99

    Oh, D. Y. et al. GPR120 is an ω-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell 142, 687–698 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. 100

    Atarashi, K. et al. ATP drives lamina propria TH17 cell differentiation. Nature 455, 808–812 (2008).

    ADS  CAS  PubMed  Google Scholar 

Download references


We are grateful to members of our laboratory, plus our colleagues C. Semenkovich and A. Shaw for many discussions. Work cited from our laboratory was supported by grants from the National Institutes of Health (DK30292, DK70977 and DK078669), the Crohn's and Colitis Foundation of America and the Bill and Melinda Gates Foundation.

Author information



Corresponding author

Correspondence to Jeffrey I. Gordon.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Additional information

Reprints and permissions information is available at

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kau, A., Ahern, P., Griffin, N. et al. Human nutrition, the gut microbiome and the immune system. Nature 474, 327–336 (2011).

Download citation

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing