Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells


Myeloid cells are a feature of most tissues. Here we show that during development, retinal myeloid cells (RMCs) produce Wnt ligands to regulate blood vessel branching. In the mouse retina, where angiogenesis occurs postnatally1, somatic deletion in RMCs of the Wnt ligand transporter Wntless2,3 results in increased angiogenesis in the deeper layers. We also show that mutation of Wnt5a and Wnt11 results in increased angiogenesis and that these ligands elicit RMC responses via a non-canonical Wnt pathway. Using cultured myeloid-like cells and RMC somatic deletion of Flt1, we show that an effector of Wnt-dependent suppression of angiogenesis by RMCs is Flt1, a naturally occurring inhibitor of vascular endothelial growth factor (VEGF)4,5,6. These findings indicate that resident myeloid cells can use a non-canonical, Wnt–Flt1 pathway to suppress angiogenic branching.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: RMCs interact with VECs and express Wnt components.
Figure 2: RMC Wls is required for suppression of deep angiogenic branching.
Figure 3: Angiogenic suppression by RMCs is a non-canonical Wnt response.
Figure 4: Flt1 expression in myeloid cells is regulated by a Wnt pathway.


  1. 1

    Gerhardt, H. et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J. Cell Biol. 161, 1163–1177 (2003)

    CAS  Article  Google Scholar 

  2. 2

    Ching, W. & Nusse, R. A dedicated Wnt secretion factor. Cell 125, 432–433 (2006)

    CAS  Article  Google Scholar 

  3. 3

    Carpenter, A. C., Rao, S., Wells, J. M., Campbell, K. & Lang, R. A. Generation of mice with a conditional null alelle for Wntless . Genesis 48, 554–558 (2010)

    CAS  Article  Google Scholar 

  4. 4

    Ambati, B. K. et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993–997 (2006)

    ADS  CAS  Article  Google Scholar 

  5. 5

    Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA 90, 10705–10709 (1993)

    ADS  CAS  Article  Google Scholar 

  6. 6

    Shibuya, M. Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). Int. J. Biochem. Cell Biol. 33, 409–420 (2001)

    CAS  Article  Google Scholar 

  7. 7

    Pipp, F. et al. VEGFR-1-selective VEGF homologue PlGF is arteriogenic: evidence for a monocyte-mediated mechanism. Circ. Res. 92, 378–385 (2003)

    CAS  Article  Google Scholar 

  8. 8

    Machnik, A. et al. Macrophages regulate salt-dependent volume and blood pressure by a vascular endothelial growth factor-C-dependent buffering mechanism. Nature Med. 15, 545–552 (2009)

    CAS  Article  Google Scholar 

  9. 9

    Lin, E. Y. & Pollard, J. W. Tumor-associated macrophages press the angiogenic switch in breast cancer. Cancer Res. 67, 5064–5066 (2007)

    CAS  Article  Google Scholar 

  10. 10

    Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814–818 (2008)

    ADS  CAS  Article  Google Scholar 

  11. 11

    Kubota, Y. et al. M-CSF inhibition selectively targets pathological angiogenesis and lymphangiogenesis. J. Exp. Med. 206, 1089–1102 (2009)

    CAS  Article  Google Scholar 

  12. 12

    Fantin, A. et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829–840 (2010)

    CAS  Article  Google Scholar 

  13. 13

    Martin, P. et al. Wound healing in the PU.1 null mouse–tissue repair is not dependent on inflammatory cells. Curr. Biol. 13, 1122–1128 (2003)

    CAS  Article  Google Scholar 

  14. 14

    Grunewald, M. et al. VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124, 175–189 (2006)

    CAS  Article  Google Scholar 

  15. 15

    Saint-Geniez, M. & D'Amore, P. A. Development and pathology of the hyaloid, choroidal and retinal vasculature. Int. J. Dev. Biol. 48, 1045–1058 (2004)

    Article  Google Scholar 

  16. 16

    Mendes-Jorge, L. et al. Scavenger function of resident autofluorescent perivascular macrophages and their contribution to the maintenance of the blood-retinal barrier. Invest. Ophthalmol. Vis. Sci. 50, 5997–6005 (2009)

    Article  Google Scholar 

  17. 17

    Lobov, I. B. et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature 437, 417–421 (2005)

    ADS  CAS  Article  Google Scholar 

  18. 18

    Deng, L. et al. A novel mouse model of inflammatory bowel disease links mammalian target of rapamycin-dependent hyperproliferation of colonic epithelium to inflammation-associated tumorigenesis. Am. J. Pathol. 176, 952–967 (2010)

    CAS  Article  Google Scholar 

  19. 19

    Yamaguchi, T. P., Bradley, A., McMahon, A. P. & Jones, S. A. Wnt5a pathway underlies outgrowth of multiple structures in the vertebrate embryo. Development 126, 1211–1223 (1999)

    CAS  PubMed  Google Scholar 

  20. 20

    Majumdar, A., Vainio, S., Kispert, A., McMahon, J. & McMahon, A. P. Wnt11 and Ret/Gdnf pathways cooperate in regulating ureteric branching during metanephric kidney development. Development 130, 3175–3185 (2003)

    CAS  Article  Google Scholar 

  21. 21

    Seifert, J. R. & Mlodzik, M. Frizzled/PCP signalling: a conserved mechanism regulating cell polarity and directed motility. Nature Rev. Genet. 8, 126–138 (2007)

    CAS  Article  Google Scholar 

  22. 22

    Bryja, V. et al. The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo . Mol. Biol. Cell 20, 924–936 (2009)

    CAS  Article  Google Scholar 

  23. 23

    Grumolato, L. et al. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 24, 2517–2530 (2010)

    CAS  Article  Google Scholar 

  24. 24

    Chappell, J. C., Taylor, S. M., Ferrara, N. & Bautch, V. L. Local guidance of emerging vessel sprouts requires soluble Flt-1. Dev. Cell 17, 377–386 (2009)

    CAS  Article  Google Scholar 

  25. 25

    Haigh, J. J. et al. Cortical and retinal defects caused by dosage-dependent reductions in VEGF-A paracrine signaling. Dev. Biol. 262, 225–241 (2003)

    CAS  Article  Google Scholar 

  26. 26

    Lichtenberger, B. M. et al. Autocrine VEGF signaling synergizes with EGFR in tumor cells to promote epithelial cancer development. Cell 140, 268–279 (2010)

    CAS  Article  Google Scholar 

  27. 27

    Blumenthal, A. et al. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108, 965–973 (2006)

    CAS  Article  Google Scholar 

  28. 28

    Stockmann, C. et al. Deletion of vascular endothelial growth factor in myeloid cells accelerates tumorigenesis. Nature 456, 814–818 (2008)

    ADS  CAS  Article  Google Scholar 

  29. 29

    Lin, S. L. et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc. Natl Acad. Sci. USA 107, 4194–4199 (2010)

    ADS  CAS  Article  Google Scholar 

  30. 30

    Tauber, A. I. Metchnikoff and the phagocytosis theory. Nature Rev. Mol. Cell Biol. 4, 897–901 (2003)

    CAS  Article  Google Scholar 

  31. 31

    Rohan, R. M., Fernandez, A., Udagawa, T., Yuan, J. & D’Amato, R. J. Genetic heterogeneity of angiogenesis in mice. FASEB J. 14, 871–876 (2000)

    CAS  Article  Google Scholar 

  32. 32

    Gao, G. et al. Difference in ischemic regulation of vascular endothelial growth factor and pigment epithelium–derived factor in Brown Norway and Sprague Dawley rats contributing to different susceptibilities to retinal neovascularization. Diabetes 51, 1218–1225 (2002)

    CAS  Article  Google Scholar 

  33. 33

    Chan, C. K. et al. Mouse strain-dependent heterogeneity of resting limbal vasculature. Invest. Ophthalmol. Vis. Sci. 45, 441–447 (2004)

    Article  Google Scholar 

  34. 34

    Chan, C. K. et al. Differential expression of pro- and antiangiogenic factors in mouse strain-dependent hypoxia-induced retinal neovascularization. Lab. Invest. 85, 721–733 (2005)

    CAS  Article  Google Scholar 

  35. 35

    Nagy, A., Gertsenstein, M., Vintersten, K. & Behringer, R. Manipulating the mouse embryo: a laboratory manual. 3rd edn, 371–373 (Cold Spring Harbor Laboratory Press, 2003)

    Google Scholar 

  36. 36

    Carpenter, A. C., Rao, S., Wells, J. M., Campbell, K. & Lang, R. A. Generation of mice with a conditional null allele for Wntless . Genesis 48, 554–558 (2010)

    CAS  Article  Google Scholar 

  37. 37

    Novak, A., Guo, C., Yang, W., Nagy, A. & Lobe, C. G. Z/EG, a double reporter mouse line that expresses enhanced green fluorescent protein upon Cre-mediated excision. Genesis 28, 147–155 (2000)

    CAS  Article  Google Scholar 

Download references


We thank P. Speeg for technical assistance and A. P. McMahon for the Wnt11 mice. This work was supported by the NIH (J.A.S., M.W-K., J.W.P., J.D.M., T.Y., B.O.W., R.A.L.) by the HHMI (J.D.M.) and Cancer Research UK (H.G.).

Author information




R.A.L provided project leadership and wrote the manuscript with J.A.S. J.A.S., I.L., S.R., H.G., and R.A.L. designed the experiments. J.A.S, I.L., S.R., G.M., A.C.C., A.R.B., J.F., and R.A. performed the experiments. S.R., J.W.P., T.Y., N.F. and B.O.W developed critical reagents. Experimental supervision and helpful discussions were provided by M.W-K., J.D.M., S.R., J.W.P., and H.G.

Corresponding author

Correspondence to Richard A. Lang.

Ethics declarations

Competing interests

[Competing interest: N.F. is an employee of Genentech Inc. The authors declare no other potential conflicts of interest.]

Supplementary information

Supplementary Information

The file contains Supplementary Figures 1-5 with legends, Supplementary Table 1 and additional references. (PDF 3021 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Stefater III, J., Lewkowich, I., Rao, S. et al. Regulation of angiogenesis by a non-canonical Wnt–Flt1 pathway in myeloid cells. Nature 474, 511–515 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing