Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High star formation rates as the origin of turbulence in early and modern disk galaxies

Abstract

Observations of star formation and kinematics in early galaxies at high spatial and spectral resolution have shown that two-thirds are massive rotating disk galaxies1,2,3,4,5, with the remainder being less massive non-rotating objects2,4,6,7,8. The line-of-sight-averaged velocity dispersions are typically five times higher than in today’s disk galaxies. This suggests that gravitationally unstable, gas-rich disks in the early Universe are fuelled by cold, dense accreting gas flowing along cosmic filaments and penetrating hot galactic gas halos9,10. These accreting flows, however, have not been observed11, and cosmic accretion cannot power the observed level of turbulence12. Here we report observations of a sample of rare, high-velocity-dispersion disk galaxies in the nearby Universe where cold accretion is unlikely to drive their high star formation rates. We find that their velocity dispersions are correlated with their star formation rates, but not their masses or gas fractions, which suggests that star formation is the energetic driver of galaxy disk turbulence at all cosmic epochs.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Kinematic pictures of local galaxies.
Figure 2: Distribution of galaxy velocity dispersion against Hα luminosity and stellar mass.

References

  1. Genzel, R. et al. The rapid formation of a large rotating disk galaxy three billion years after the Big Bang. Nature 442, 786–789 (2006)

    ADS  CAS  Article  Google Scholar 

  2. Förster Schreiber, N. M. et al. The SINS Survey: SINFONI integral field spectroscopy of z 2 star-forming galaxies. Astrophys. J. 706, 1364–1428 (2009)

    ADS  Article  Google Scholar 

  3. Stark, D. P. et al. The formation and assembly of a typical star-forming galaxy at redshift z ≈ 3. Nature 455, 775–777 (2008)

    ADS  CAS  Article  Google Scholar 

  4. Epinat, B. et al. Integral field spectroscopy with SINFONI of VVDS galaxies. I. Galaxy dynamics and mass assembly at 1.2 < z 1.6. Astron. Astrophys. 504, 789–805 (2009)

    ADS  CAS  Article  Google Scholar 

  5. Jones, T. A., Swinbank, A. M., Ellis, R. S., Richard, J. & Stark, D. P. Resolved spectroscopy of gravitationally lensed galaxies: recovering coherent velocity fields in subluminous z 2–3 galaxies. Mon. Not. R. Astron. Soc. 404, 1247–1262 (2010)

    ADS  CAS  Google Scholar 

  6. Flores, H., Hammer, F., Puech, M., Amram, P. & Balkowski, C. 3D spectroscopy with VLT/GIRAFFE. I. The true Tully Fisher relationship at z 0.6. Astron. Astrophys. 455, 107–118 (2006)

    ADS  CAS  Article  Google Scholar 

  7. Law, D. R. et al. The kiloparsec-scale kinematics of high-redshift star-forming galaxies. Astrophys. J. 697, 2057–2082 (2009)

    ADS  CAS  Article  Google Scholar 

  8. Lemoine-Busserolle, M., Bunker, A., Lamareille, F. & Kissler-Patig, M. 2D kinematics and physical properties of z 3 star-forming galaxies. Mon. Not. R. Astron. Soc. 401, 1657–1669 (2010)

    ADS  Article  Google Scholar 

  9. Dekel, A. et al. Cold streams in early massive hot haloes as the main mode of galaxy formation. Nature 457, 451–454 (2009)

    ADS  CAS  Article  Google Scholar 

  10. Elmegreen, B. G., Bournaud, F. & Elmegreen, D. M. Bulge formation by the coalescence of giant clumps in primordial disk galaxies. Astrophys. J. 688, 67–77 (2008)

    ADS  CAS  Article  Google Scholar 

  11. Steidel, C. C. et al. The structure and kinematics of the circum-galactic medium from far-UV spectra of z 2–3 galaxies. Astrophys. J. 717, 289–322 (2010)

    ADS  CAS  Article  Google Scholar 

  12. Elmegreen, B. G. & Burkert, A. Accretion-driven turbulence and the transition to global instability in young galaxy disks. Astrophys. J. 712, 294–302 (2010)

    ADS  Article  Google Scholar 

  13. Brinchmann, J. et al. The physical properties of star-forming galaxies in the low-redshift Universe. Mon. Not. R. Astron. Soc. 351, 1151–1179 (2004)

    ADS  CAS  Article  Google Scholar 

  14. Kauffmann, G. et al. Stellar masses and star formation histories for 105 galaxies from the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 341, 33–53 (2003)

    ADS  Article  Google Scholar 

  15. Sharp, R. et al. Performance of AAOmega: the AAT multi-purpose fiber-fed spectrograph. Proc. SPIE 6269 10.1117/12.671022 (2006)

  16. Dopita, M. et al. The Wide Field Spectrograph (WiFeS). Astrophys. Space Sci. 310, 255–268 (2007)

    ADS  Article  Google Scholar 

  17. James, P. A., Knapen, J. H., Shane, N. S., Baldry, I. K. & de Jong, R. S. The Hα galaxy survey. IV. Star formation in the local Universe. Astron. Astrophys. 482, 507–516 (2008)

    ADS  CAS  Article  Google Scholar 

  18. Epinat, B., Amram, P. & Marcelin, M. GHASP: an Hα kinematic survey of 203 spiral and irregular galaxies. VII. Revisiting the analysis of Hα data cubes for 97 galaxies. Mon. Not. R. Astron. Soc. 390, 466–504 (2008)

    ADS  Google Scholar 

  19. Epinat, B., Amram, P., Balkowski, C. & Marcelin, M. Evidence for strong dynamical evolution in disc galaxies through the last 11 Gyr. GHASP VIII – a local reference sample of rotating disc galaxies for high-redshift studies. Mon. Not. R. Astron. Soc. 401, 2113–2147 (2010)

    ADS  Article  Google Scholar 

  20. Tully, R. B. The kinematics and dynamics of M51. 1. The observations. Astrophys. J. Suppl. Ser. 27, 415–435 (1974)

    ADS  Article  Google Scholar 

  21. Kennicutt, R. C., Jr Star formation in galaxies along the Hubble sequence. Annu. Rev. Astron. Astrophys. 36, 189–232 (1998)

    ADS  CAS  Article  Google Scholar 

  22. Pei, Y. C. Interstellar dust from the Milky Way to the Magellanic Clouds. Astrophys. J. 395, 130–139 (1992)

    ADS  Article  Google Scholar 

  23. Kennicutt, R. C., Jr The global Schmidt law in star-forming galaxies. Astrophys. J. 498, 541–552 (1998)

    ADS  CAS  Article  Google Scholar 

  24. Dekel, A. & Birnboim, Y. Galaxy bimodality due to cold flows and shock heating. Mon. Not. R. Astron. Soc. 368, 2–20 (2006)

    ADS  CAS  Article  Google Scholar 

  25. Dib, S., Bell, E. & Burkert, A. The supernova rate-velocity dispersion relation in the interstellar medium. Astrophys. J. 638, 797–810 (2006)

    ADS  CAS  Article  Google Scholar 

  26. Glazebrook, K. Galaxy formation: too small to ignore. Nature 460, 694–695 (2009)

    ADS  CAS  Article  Google Scholar 

  27. Menci, N., Fontana, A., Giallongo, E. & Salimbeni, S. Bimodal color distribution in hierarchical galaxy formation. Astrophys. J. 632, 49–57 (2005)

    ADS  CAS  Article  Google Scholar 

  28. Lehnert, M. D., Heckman, T. M. & Weaver, K. A. Very extended X-ray and Hα emission in M82: Implications for the superwind phenomenon. Astrophys. J. 523, 575–584 (1999)

    ADS  CAS  Article  Google Scholar 

  29. Gilbank, D. G., Baldry, I. K., Balogh, M. L., Glazebrook, K. & Bower, R. G. The local star formation rate density: assessing calibrations using [OII], H and UV luminosities. Mon. Not. R. Astron. Soc. 405, 2594–2614 (2010)

    ADS  CAS  Google Scholar 

Download references

Acknowledgements

A.W.G. and K.G. acknowledge financial support from the Australian Research Council. A.W.G. acknowledges a special scholarship from the Chancellery of the Swinburne University of Technology. We wish to thank the staff of the Anglo-Australian Observatory and the staff of the ANU 2.3-m telescope for their support of these observations.

Author information

Authors and Affiliations

Authors

Contributions

K.G. oversaw the project. A.W.G., K.G., I.D., P. J. McGregor, G.B.P. and R.G.S. collected the data at the telescope. A.W.G. completed the data reduction with help from P. J. McGregor and R.G.S. M.C. kindly provided observing time. A.W.G. and K.G. analysed the data and wrote the paper. All authors provided extensive suggestions and comments at each stage of the project.

Corresponding author

Correspondence to Andrew W. Green.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

This file contains Supplementary Text comprising of an overview of comparison data presented, sample selection methods and σm errors and the effects of beam smearing and resolution. The file also contains Supplementary Figures 1-3 with legends and additional references. (PDF 415 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Green, A., Glazebrook, K., McGregor, P. et al. High star formation rates as the origin of turbulence in early and modern disk galaxies. Nature 467, 684–686 (2010). https://doi.org/10.1038/nature09452

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nature09452

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing