Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Single-shot readout of an electron spin in silicon


The size of silicon transistors used in microelectronic devices is shrinking to the level at which quantum effects become important1. Although this presents a significant challenge for the further scaling of microprocessors, it provides the potential for radical innovations in the form of spin-based quantum computers2,3,4 and spintronic devices5. An electron spin in silicon can represent a well-isolated quantum bit with long coherence times6 because of the weak spin–orbit coupling7 and the possibility of eliminating nuclear spins from the bulk crystal8. However, the control of single electrons in silicon has proved challenging, and so far the observation and manipulation of a single spin has been impossible. Here we report the demonstration of single-shot, time-resolved readout of an electron spin in silicon. This has been performed in a device consisting of implanted phosphorus donors9 coupled to a metal-oxide-semiconductor single-electron transistor10,11—compatible with current microelectronic technology. We observed a spin lifetime of 6 seconds at a magnetic field of 1.5 tesla, and achieved a spin readout fidelity better than 90 per cent. High-fidelity single-shot spin readout in silicon opens the way to the development of a new generation of quantum computing and spintronic devices, built using the most important material in the semiconductor industry.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Spin readout device configuration and charge transitions.
Figure 2: Single-shot spin readout and calibration of the ‘read’ level.
Figure 3: Spin relaxation rate.
Figure 4: Readout fidelity and visibility.


  1. Levi, A. J. F. Towards quantum engineering. Proc. IEEE 96, 335–342 (2008)

    Article  Google Scholar 

  2. Loss, D. & DiVincenzo, D. P. Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    ADS  CAS  Article  Google Scholar 

  3. Kane, B. E. A silicon-based nuclear spin quantum computer. Nature 393, 133–137 (1998)

    ADS  CAS  Article  Google Scholar 

  4. Hollenberg, L. C. L., Greentree, A. D., Fowler, A. G. & Wellard, C. J. Two-dimensional architectures for donor-based quantum computing. Phys. Rev. B 74, 045311 (2006)

    ADS  Article  Google Scholar 

  5. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    ADS  Article  Google Scholar 

  6. Tyryshkin, A. M., Lyon, S. A., Astashkin, A. V. & Raitsimring, A. M. Electron spin relaxation times of phosphorus donors in silicon. Phys. Rev. B 68, 193207 (2003)

    ADS  Article  Google Scholar 

  7. Feher, G. & Gere, E. A. Electron spin resonance experiments on donors in silicon. II. Electron spin relaxation effects. Phys. Rev. 114, 1245–1256 (1959)

    ADS  CAS  Article  Google Scholar 

  8. Ager, J. W. et al. High-purity, isotopically enriched bulk silicon. J. Electrochem. Soc. 152, G448–G451 (2005)

    CAS  Article  Google Scholar 

  9. Jamieson, D. N. et al. Controlled shallow single-ion implantation in silicon using an active substrate for sub-20-keV ions. Appl. Phys. Lett. 86, 202101 (2005)

    ADS  Article  Google Scholar 

  10. Angus, S. J., Ferguson, A. J., Dzurak, A. S. & Clark, R. G. Gate-defined quantum dots in intrinsic silicon. Nano Lett. 7, 2051–2055 (2007)

    ADS  CAS  Article  Google Scholar 

  11. Morello, A. et al. Architecture for high-sensitivity single-shot readout and control of the electron spin of individual donors in silicon. Phys. Rev. B 80, 081307(R) (2009)

    ADS  Article  Google Scholar 

  12. Ladd, T. D. et al. Quantum computers. Nature 464, 45–53 (2010)

    ADS  CAS  Article  Google Scholar 

  13. Elzerman, J. M. et al. Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431–435 (2004)

    ADS  CAS  Article  Google Scholar 

  14. Hanson, R. et al. Single-shot readout of electron spin states in a quantum dot using spin-dependent tunnel rates. Phys. Rev. Lett. 94, 196802 (2005)

    ADS  CAS  Article  Google Scholar 

  15. Barthel, C., Reilly, D. J., Marcus, C. M., Hanson, M. P. & Gossard, A. C. Rapid single-shot measurement of a singlet-triplet qubit. Phys. Rev. Lett. 103, 160503 (2009)

    ADS  CAS  Article  Google Scholar 

  16. Devoret, M. H. & Schoelkopf, R. J. Amplifying quantum signals with the single-electron transistor. Nature 406, 1039–1046 (2000)

    CAS  Article  Google Scholar 

  17. Goswami, S., et al. Controllable valley splitting in silicon quantum devices.Nature Phys. 3, 41–45 (2007); published online 10 December 2006.

    ADS  Article  Google Scholar 

  18. Morton, J. J. L. et al. Solid-state quantum memory using the 31P nuclear spin. Nature 455, 1085–1088 (2008)

    ADS  CAS  Article  Google Scholar 

  19. Hofmann, F. et al. Single electron switching in a parallel quantum dot. Phys. Rev. B 51, 13872–13875 (1995)

    ADS  CAS  Article  Google Scholar 

  20. Huebl, H. et al. Electron tunnel rates in a donor-silicon single electron transistor hybrid. Phys. Rev. B 81, 235318 (2010)

    ADS  Article  Google Scholar 

  21. Tan, K. Y. et al. Transport spectroscopy of single phosphorus donors in a silicon nanoscale transistor. Nano Lett. 10, 11–15 (2010)

    ADS  CAS  Article  Google Scholar 

  22. DiVincenzo, D. P. The physical implementation of quantum computation. Fortschr. Phys. 48, 771–783 (2000)

    Article  Google Scholar 

  23. Hanson, R., Kouwenhoven, L. P., Petta, J. R., Tarucha, S. & Vandersypen, L. K. Spins in few-electron quantum dots. Rev. Mod. Phys. 79, 1217–1265 (2007)

    ADS  CAS  Article  Google Scholar 

  24. Hasegawa, H. Spin-lattice relaxation of shallow donor states in Ge and Si through a direct phonon process. Phys. Rev. 118, 1523–1534 (1960)

    ADS  CAS  Article  Google Scholar 

  25. Hayes, R. R. et al. Lifetime measurements (T 1) of electron spins in Si/SiGe quantum dots. Preprint at 〈〉 (2009)

  26. Xiao, M., House, M. G. & Jiang, H. W. Measurement of the spin relaxation time of single electrons in a silicon metal-oxide-semiconductor-based quantum dot. Phys. Rev. Lett. 104, 096801 (2010)

    ADS  CAS  Article  Google Scholar 

  27. de Sousa, R. Dangling-bond spin relaxation and magnetic 1/f noise from the amorphous-semiconductor/oxide interface: theory. Phys. Rev. B 76, 245306 (2007)

    ADS  Article  Google Scholar 

  28. Shankar, S., Tyryshkin, A. M., He, J. & Lyon, S. A. Spin relaxation and coherence times for electrons at the Si/SiO2 interface. Preprint at 〈〉 (2009)

  29. Calderón, M. J., Saraiva, A., Koiller, B. & Das Sarma, S. Quantum control and manipulation of donor electrons in Si-based quantum computing. Appl. Phys. Lett. 105, 122410 (2009)

    Google Scholar 

  30. Xiao, M., Martin, I., Yablonovitch, E. & Jiang, H. W. Electrical detection of the spin resonance of a single electron in a silicon field-effect transistor. Nature 430, 435–439 (2004)

    ADS  CAS  Article  Google Scholar 

Download references


We thank D. D. Awschalom, C. Tahan, J. J. L. Morton and G. Prawiroatmodjo for comments and suggestions, W. H. Lim for assistance with device fabrication, and R. P. Starrett, D. Barber, A. Cimmino and R. Szymanski for technical assistance. We acknowledge support from the Australian Research Council, the Australian Government, the US National Security Agency and the US Army Research Office under contract number W911NF-08-1-0527. M.M. acknowledges support from the Academy of Finland and the Emil Aaltonen foundation.

Author information

Authors and Affiliations



A.M., H.H., C.D.N., D.N.J., C.C.E., L.C.L.H., R.G.C. (while at UNSW) and A.S.D. conceived and designed the experiment, K.W.C. and K.Y.T. fabricated the devices, C.Y., J.A.v.D., A.D.C.A. and D.N.J. implanted the P donors, A.M., J.J.P. and F.A.Z. performed and analysed the measurements, A.M., M.M. and J.J.P. analysed the readout fidelity. A.M. wrote the manuscript with input from all coauthors

Corresponding author

Correspondence to Andrea Morello.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

The file contains Supplementary Information on Deterministic loading of the spin ground state and measurement of the Zeeman energy splitting, measurement methods and analysis of the spin relaxation rate and readout fidelity and calculation of the distribution of peak currents. The file also contains Supplementary Figures 1-4 with legends and additional references. (PDF 509 kb)

PowerPoint slides

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Morello, A., Pla, J., Zwanenburg, F. et al. Single-shot readout of an electron spin in silicon. Nature 467, 687–691 (2010).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Further reading


By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing