Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanocomposite polymer electrolytes for lithium batteries

Abstract

Ionically conducting polymer membranes (polymer electrolytes) might enhance lithium-battery technology by replacing the liquid electrolyte currently in use and thereby enabling the fabrication of flexible, compact, laminated solid-state structures free from leaks and available in varied geometries1. Polymer electrolytes explored for these purposes are commonly complexes of a lithium salt (LiX) with a high-molecular-weight polymer such as polyethylene oxide (PEO). But PEO tends to crystallize below 60 °C, whereas fast ion transport is a characteristic of the amorphous phase. So the conductivity of PEO–LiX electrolytes reaches practically useful values (of about 10−4 S cm−1) only at temperatures of 60–80 °C. The most common approach for lowering the operational temperature has been to add liquid plasticizers, but this promotes deterioration of the electrolyte's mechanical properties and increases its reactivity towards the lithium metal anode. Here we show that nanometre-sized ceramic powders can perform as solid plasticizers for PEO, kinetically inhibiting crystallization on annealing from the amorphous state above 60 °C. We demonstrate conductivities of around 10−4 S cm−1 at 50 °C and 10−5 S cm−1 at 30 °C in a PEO–LiClO4 mixture containing powders of TiO2 and Al2O3 with particle sizes of 5.8–13 nm. Further optimization might lead to practical solid-state polymer electrolytes for lithium batteries.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Arrhenius plots of the conductivity of ceramic-free PEO–LiClO4 and of nanocomposite PEO–LiClO4..10 wt% TiO2 and PEO–LiClO4.10 wt% Al2O3 polymer electrolytes (PEO:LiClO4 = 8:1 in all cases).
Figure 2

References

  1. Scrosati, B. Lithium batteries. Chim. Ind. (Milan) 79, 463–471 (1997).

    CAS  Google Scholar 

  2. Lightfoot, P., Metha, M. A. & Bruce, P. G. Crystal structure of the polymer electrolyte poly(ethylene oxide)3:LiCF3. Science 262, 883–885 (1993).

    ADS  CAS  Article  Google Scholar 

  3. Vincent, C. A. & Scrosati, B. C. H. Modern Batteries. An Introduction to Electrochemical Power Sources 2nd edn (Arnold, London, (1997)).

    Google Scholar 

  4. Weston, J. E. & Steele, B. C. H. Effects of inert fillers on the mechanical and electrochemical properties on lithium salt-poly(ethylene oxide) polymer electrolytes. Solid State Ionics 7, 75–79 (1982).

    CAS  Article  Google Scholar 

  5. Croce, F. & Scrosati, B. Interfacial phenomena in polymer electrolyte cells: lithium passivation and cyclability. J. Power Sources 43, 9–19 (1993).

    ADS  CAS  Article  Google Scholar 

  6. Borghini, M. C., Mastragostino, M., Passerini, S. & Scrosati, B. Electrochemical properties of polyethylene oxide-Li[(CF3SO2)2N] — gamma-LiAlO2composite polymer electrolytes. J. Electrochem. Soc. 142, 2118–2121 (1995).

    CAS  Article  Google Scholar 

  7. Capuano, F., Croce, F. & Scrosati, B. Composite polymer electrolytes. US Patent No. 5,576,115 (1996).

  8. Croce, F., Bonino, F., Panero, S. & Scrosati, B. Properties of mixed polymer and crystalline ionic conductors. Phil. Mag. B 59, 161–168 (1989).

    ADS  CAS  Article  Google Scholar 

  9. Capuano, F., Croce, F. & Scrosati, B. Composite polymer electrolytes. J. Electrochem. Soc. 52, 1918–1922 (1991).

    Article  Google Scholar 

  10. Kumer, B. & Scanlon, Y. G. Polymer ceramic composite electrolytes. J. Power Sources 52, 261–268 (1994).

    ADS  Article  Google Scholar 

  11. Croce, F., Scrosati, B. & Mariotto, G. Electrochemical and spectroscopic study of the transport properties of composite polymer electrolytes. Chem. Mater. 4, 1134–1136 (1992).

    CAS  Article  Google Scholar 

  12. Wieczorek, W., Florjancyk, Z. & Stevens, J. R. Composite polyether based electrolytes. Electrochim. Acta 40, 2251–2258 (1995).

    CAS  Article  Google Scholar 

  13. Przyluski, J., Siekierski, M. & Wieczorek, W. Effective medium theory in studies of conductivity of composite polymeric electrolytes. Electrochim. Acta 40, 2101–2108 (1995).

    CAS  Article  Google Scholar 

  14. Kumer, B. paper presented at 5th Workshop for Battery Exploration Development, US Navy, 30 June–3 July, Burlington, VT (1997).

    Google Scholar 

  15. Gray, F. M. Solid Polymer Electrolytes-Fundamentals and Technical Applications (VCH, Wenheim, (1991)).

    Google Scholar 

  16. Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurements of transference numbers in polymer electrolytes. Polymer 28, 2325–2330 (1987).

    Article  Google Scholar 

  17. Abraham, K. M., Jiang, Z. & Carroll, B. Highly conductive PEO-like polymer electrolytes. Chem. Mater. 9, 1978–1988 (1997).

    CAS  Article  Google Scholar 

  18. Scrosati, B. Challenge of portable power. Nature 373, 557–558 (1995).

    ADS  CAS  Article  Google Scholar 

  19. Croce, F. & Scrosati, B. Composite polymer ionics: advanced electrolyte materials for thin-film batteries. Polym. Adv. Techn. 4, 198–204 (1993).

    Article  Google Scholar 

Download references

Acknowledgements

We thank M. Musei (CISE Laboratory, Milan) for providing samples of TiO2 nanopowders.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Scrosati.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Croce, F., Appetecchi, G., Persi, L. et al. Nanocomposite polymer electrolytes for lithium batteries. Nature 394, 456–458 (1998). https://doi.org/10.1038/28818

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/28818

Further reading

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing